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Nonlinear evolution of an interface in the Richtmyer-Meshkov instability
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The linear theory of the Richtmyer-Meshkov instability derived by Wouchuk and NishjRdmgs. Plasmas
4, 3761(1997] indicates that the instability is driven by the nonuniform velocity shear left by transmitted and
reflected rippled shocks at a corrugated interface. In this work, the nonlinear evolution of the interface has been
investigated as a self-interaction of a nonuniform vortex sheet with a density jump. The theory developed
shows the importance of the finite density jump and the finite initial corrugation amplitude of the interface. By
introducing Lagrangian markers on the interface with proper kinematic boundary conditions, it is shown that
stretching and shrinking of the interface occur locally even in the tangential direction. This causes deformation
of bubble and spike profiles depending on the Atwood number. The vorticity on the interface for a finite density
jump is not conserved in the nonlinear regime. Our results suggest that the spiral structure of the spike is due
to local increase and decrease of the vorticity on the interface. Nonlinear analysis shows that the large initial
amplitude of the corrugation results in rapid increase of the vorticity, which may also explain the fast roll up
motion of the spiral for large amplitudes. With the use of the asymptotic linear growth rate, the nonlinear
evolution of the instability is uniquely determined from the initial corrugation amplitude of the interface, the
Atwood number, and the incident shock intensity. There is no need to use an impulsive formulation. The
analytical nonlinear growth agrees well with the experimdimonte et al, Phys. Plasmas, 614 (1996)].
The theory reveals nonlinear properties of the instability, such as the time evolution of the interface profiles and
the vorticity on the interface, and also their dependence on the Atwood number and the corrugation amplitude.
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[. INTRODUCTION ticity on the interface does not change with time. However,
the vorticity is not conserved in the nonlinear regime for a
When a shock wave passes through a corrugated interfadmite density jump. A spiral structure of the spike appears in
between two fluids with different densities, the perturbed in-the strongly nonlinear regime of the instabili§]. Nonlinear
terface is deformed and eventually rolls up like a mushroomincrease of the vorticity may cause formation of the spiral.
This phenomenon is known as the Richtmyer-MeshkovTherefore, we need a nonlinear model so that we can de-
(RM) instability [1-5], and the interface perturbation grows scribe the nonlinear evolution of both the interface profile
linearly with respect to timé in the linear regime. The RM and vorticity on the interface self-consistently with the den-
instability is of direct importance in inertial confinement fu- sity jump.
sion any time a shock wave crosses layers of materials with When the incident shock is strong, the bulk vorticity gen-
different densities. erated behind the transmitted shock cannot be ignored. Nev-
A lot of researchers including Richtmyer have tried to ertheless, when the shock is weak, the linear RM instability
explain this instability with an impulsive gravitational accel- grows only due to the vorticity that the shocks left at the
eration term. However, Wouchuk and Nishihara formula forinterface[6—8]. This indicates that the nonlinear evolution of
the RM growth ratg6,7] indicates that the RM instability the RM instability can be treated as a vortex sheet with a
essentially grows due to vorticity left by transmitted and re-spatial inhomogeneity.
flected rippled shockéor reflected rarefactiomat the corru- Regarding the initial disturbance, we can classify the
gated interface. This is also confirmed from our simulationsRayleigh-Taylon(RT) instability, the Kelvin-HelmholtZKH)
in this paper. The vorticity may not be uniformly distributed instability, and the RM instability as follows.
along the interface when the incident shock passes through (1) There exists no vorticity on the interfacetatO in the
the corrugated surface, which leads to local stretching an®T instability.
shrinking of the interface. As will be shown below, when the  (2) A homogeneous(one-dimensional strong vorticity
density jump is finite across the interface, the stretching andistributes on the interface &0 in the KH instability.
shrinking of the interface occur even in the tangential direc- (3) There exists an inhomogeneosvo-dimensional
tion. This causes different profiles for bubble and spike deweak vorticity on the interface in the RM instability.
pending on the Atwood number. In linear theory, after the The inhomogeneous vorticity distribution in the RM in-
instability reaches the asymptotic linear growth rate, the vorstability comes from the fact that the initial interface is ob-
lique to the incident shock. In Ref9], the interface growth
in the RT and RM instabilities is explained from the vortex
*Electronic address: matsuoka@phys.sci.ehime-u.ac.jp viewpoint: Zabusky solved numerically a vorticity equation
"Electronic address: nishihara@ile.osaka-u.ac.jp derived from a compressible Euler equation and investigated
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the bubble and spike structures together with their growtlculation on the vortex sheet comparing with simulations and

rates in detail. There are also some works in which the interprevious works. We also discuss the dependence of these

face is treated as a vortex shé&0], the sheet is split into properties of the RM instability on the Atwood number and

point vortices and the temporal evolution of the interface ison the initial corrugation amplitude. We summarize our work

investigated numerically. However, following two points in Sec. V.

cannot be explained with their point vortex model, the

stretching or shrinking of the sheet described above and temH. SHOCKED INTERFACE AND NONUNIFORM VORTEX

poral evolution of circulation due to the finite Atwood num- SHEET

ber in this system. There are some other approaches investi-

gating the temporal evolution and growth rate of the

interface with a weakly nonlinear analysi$1,12. Their

weakly nonlinear analysis, however, assumes that the inte

face moves only to the normal direction in spite of the fact

that the interface also expands and contracts in the tangentité} : S :

direction. 2 shget with a dens@y jump. With the use of two-
In this paper, we parametrize the interface with Lagrang—d imensional hydrodynamic code IMPACT24], we have

ian markers. We then show that for nonuniform vorticity on compared two cases; one is the case in which an incident
) C . o . Y ON ghock hits a sinusoidal interface between two different fluids
the interface with a finite density jump, the interface expand

and contracts even in the tangential direction. We aIS?rom a light fluid to a heavy fluid, and the other is the case

present proper kinematic boundary conditions in order to decE_hat the velocity shear is initially imposed on the sinusoidal

. . ) : . interface without the incident shock.
scribe the nonlinear evolution of the interface with the tem- - . .
, ) . ; . We suppose that agt=0 there is an interface that sepa-
poral evolution of the circulation on the interface. Compari- o - 1 aem
. A . S rates two fluids: light fluid “1” (y>0) and heavy fluid “2
son of analytical results with simulations indicates that local

) I . <0). A shock propagating through the light fluid with
increase and decrease of the vorticity cause formation of th\%locityui (<0) hits the interface at=0. The fluid velocity

spiral structure in the strongly nonlinear regime of the insta- ~ . S ; =

bility. Nonlinear analysis also shows that the increase of th hehmhd tr|1(e_ mmdent_shoqk B#I (.<0) rf]or t<0. At FBO“LI’ .

vorticity depends strongly on the initial corrugation ampli- € shockis transm|tte_d mto_ uid 2 that moves with ve pmty

tude, which may explain simulation resulfis3] that the large u; (<0) and the den.sny t.’eh'nd the transmntgd shockis

corrugation amplitude leads to fast roll up motion of '[heor1 the other hand,'m fluid 1 another shock is reflected. In
this paper, we consider only the case of the reflected shock,

spiral. )
Here we do not adopt the impulsive gravitational accel-Put the results are the same for a reflected rarefaction. The

eration derived phenomenologically by Richtmyer, since the(eflected shock velocity and the density behind the reflected

velocity shear at the interface is not uniquely determineoShOCk are, (>Q) and’?l' respgctlvely. As a resglt of the'
only from the impulsive acceleration, which causes the fajl-Shock-interface interaction, the interface moves with velocity

ure of the impulsive model. Instead, the asymptotic linear’ (<0). . . . .
growth rate derived in Ref7] is used to initialize the non- . In the IaFter case, I.€., the velocity shear on the smusqdal
linear model. As a matter of fact. the use of the linear grothnterface without the incident shock, we have used following

rate derived in Ref.7] is restricted to low Mach numbers of Initial conditions with k_nowle(_j_ge of the asymptotic Ii_near
the incident shock. In this way, the generation of vorticity in growth rate of the RM instability7]. With the assumption

fluids can be neglected. Roughly speaking, shock Ma(:.hlat in ghg asymptoltic ﬁtaghe both frlluids bﬁcon;]e incompre;s-
number should be less than 2. However, there could be sity- e and irrotational, the theory shows that the asymptotic

ations in which fair agreement with simulations or experi- inear growth rate is given by

ments can be found at a higher Mach number. We also as- Stne — 0D

sume that fluids are incompressible, which is verified U”n:pl x+ — P20U2x+ , (1)
independently to shock Mach number in an asymptotic stage p1tp2

of the linear growth6]. Initial amplitudes of the interface i ) i
corrugation are assumed to be finite but small compared with/"€rédva,. andév,,, are tangential velocity perturbations
its wavelength. Because of Taylor series expansion employeeghind the reflected and transmitted shocks=a0+, re-

in the analytical calculation, the mushroom structure of theSPectively. They are uniquely determined from the initial am-
spike cannot be resolved. plitude of the corrugation and the incident shock intensity.

In Sec. Il. we show that the nonlinear evolution of the RM L&t Us assume that the interface has an initial corrugation of

instability can be described as a self-interaction of a nonunia formy=agcoskx), where aq is a corrugation amplitude
form vortex sheet by comparing its nonlinear dynamics withbefore the shock hits the interfades 27/\ is the perturba-
that of a shocked interface with the use of two-dimensionation wave number and is the wavelength. If the initial
hydrodynamic simulations. In Sec. lll, we develop a nonlin-amplitude is very small compared with the wavelength, the
ear theory that describes the nonlinear evolution of the nondpple amplitudes of the transmitted and reflected shock
uniform vortex sheet with the density jump across it. In Secfronts are, respectively, approximated as,

IV, we show results of the nonlinear growth rate and profiles o o

of bubble and spike, and the nonlinear evolution of the cir- ar=ag(l—ui/up), ar=ag(l—u/u). (2

As mentioned in the Introduction, the RM instability oc-
curs due to the vorticity left behind the rippled shocks after
the incident shock passes through a corrugated interface.
TThis indicates that nonlinear dynamics of the unstable inter-
ce can be treated as a self-interaction of a nonuniform vor-
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TABLE I. Simulation parameters, light fluid mass density;  shocked interface

p2, heavy fluid mass densityy, pressure at interfacey, initial
corrugation amplitude; and;, , initial velocity shear. --- 0.24
shock

Shocked interface \ortex sheet "’E

0.18 ©

p1 (glen?) 4x1072 1.0677< 1071 =)
p, (glent) 9.3333< 10 ? 2.3549%<10° ! 2
012 @

P (Mban ! 6.1567 KV, t="0083 Ky t=1 KV, t=6 KV, t=12 g
& (m) 4.6322 2.56 0 b
viin (cm/seg 3.6465< 10° §

The shock front ripples lead to the tangential velocity at both
sides of the interface at=0+ as

I
- 0-06
0.00

801y =Kar(vi—v1),  Svo =Kaw; ®) vortex sheet

In general, both values are different and an initial vorticity g5 1. Density profiles for the case in which a shock hits an
K= 0U1y+ — OUox+ eXists at the interface. If a rarefaction is jnterface(top), and for the case in which velocity shear is initially
reflected instead of a shock, then the shear velogity,;  imposed on the corrugated interface without shock incidbot-
should be calculated as in R¢L5]. Later on, as the shocks tom) at different times. Gray scale shows fluid mass density
separate away, the initial vorticity will change due to baro-(g/cnt).
clinic generation of the vorticity caused by pressure pertur- L
bations behind the shocks and the density jump across tHBcident shock passes through it, i.e;, Top four are the
interface. In the bulk, however, first-order vorticity is only €ases Of the shocked interface at normalized timéwgf;t
generated at the shock fronts. In Rgf], it was proved that . 0:083. 1, 6, and 12 from left to right. The incident shock

pressure and density perturbations between the shocks vanigﬁs the corrugation surface at normalized tike;,t=0. .
when the shocks are sufficiently far away. This is indepen- ottom four are the cases of the vortex sheet at normalized
dent of the incident shock strength. This means that the pe}'-me ofkvjint=0, 1, 6, and 12 from left to right. The initial

turbed velocity field asymptotically becomes incompressiblefa‘tWOOd number and corrugation amplitude of the interface

It was also shown in Ref6] that the bulk vorticity is of are 0.4 andaol)\=0.0§62 for the shocked interface and
second order in the shock intensity for a weak shock. Therethose areA=0.376 anda/\=0.02 for the vortex sheet, re-
fore, in the weak shock limit, we have the following relations SPectively (see Table )l The results show that profiles of

among the amplitudes of the asymptotic velocity perturbabu_bb|9 and spike, even mushroom and spiral structures of the
tions at the interfacesv |, = 6v 1= — 6v, spike, are almost the same for both cases, except noticeable
I X X"

Thus by introducing the velocity potentials in both fluids d|fference Of. the bubble structure and the thickness of the
and the corrugation amplitude of the interface as SP'k_e'. The cﬂfference may be due 10 the facts that the bulk
vorticity behind the transmitted shock suppresses the growth
Viin ~ R of the bubble and also that during the interaction of the in-
b= 1Texq Fk(y—acoskx)]coskx for y=a, cident shock with the corrugated interface, higher harmonics
of the corrugation and the velocity shear may arise at the
. (4) interface in the case of the shocked interface.
a=ag(l-viluy), Nonlinear evolution of the interface is tracked using the
) Lagrangian markers on the interface within second order of
respectively, we can give the initial velocity shear on thegccyracy in both time and space. Figure 2 shows time depen-
corrugated interface. The corrugation amplitude of the intergence of the nonlinear growth rates normalized by the
face in the case of the vortex sheet, should coincide with  asymptotic linear growth rate;;, given by Eq.(1) for two
the one at=0+ in the case that the incident shock passesases. The positive and negative values correspond to the
through it. spike and bubble growth rates, respectively. Dashed and dot-
In the simulations, we used an ideal gas equation of stateed line and thin solid line with closed circles indicate the
with adiabatic exponent 5/3 for both fluids. The incidentgrowth rate for the shocked interface and that for the vortex
shock Mach number is 2 and the wavelength of the sinusheet, respectively. They agree fairly well with each other
soidal corrugation is 12@m. The other parameters are except in early time due to the finite transition time required
shown in Table |. Note that all of the parameters for thefor the incident shock to pass through the interface with the
vortex sheet correspond to the postshock condition and thefjnite corrugation amplitude and also that required for the
are calculated from the shock jump conditions and @g. instability to reach the asymptotic linear growth rate. The
Figure 1 shows density profiles of two cases with grayoscillation of the growth rate for the shocked case is due to
scale. Hereafter, we show simulation results in a frame movthe fact that the sound waves propagate back and forth be-
ing with the velocity of the undisturbed interface after thetween the reflected and transmitted shocks. In the linear re-
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time [ns] tational acceleration are neglected, the temporal evolution of
1 2 3 a 5 the circulationI” on the interface is given by the following
15 ion:
Sr T T T T T s equation:
£ [ spike
2 1f === oo __ 14 - or__[p® 1 1 A .
e [ 7 Sem—<=====; 3 57 =2A 57— 50 0 g Kt 5K ,
: [ / ‘ _ E Dt Dt 2 8 2 interface
- 0.5 [~ 2 [1}
E :/ -1 |n°
= g ‘)-( D J — — plul+p2u2 Ak
0 = _—— . = =0— —

g 0 :. 2 Dt 8t +u V, u p1+p2 q 2 ! (6)
o F\ .71 =8
§ 05 F\ 2 '§ where k=u;— U, is the vorticity induced on the sheet and
= 4 - -3 g g=(u;+u,)/2 is an average of the velocities on the two
s bubble -4 sides with the velocity(i=1,2) in each side and = (¢,

; T T T +¢,)/2 is the average velocity potential related with

) '50 0.2 0.4 0.6 0.8 1 =V ¢,;. The circulationl'= ¢, — ¢, is also related tac as

«=VTI'. The fluid particle on the interface is set so that they
time kvt move with velocityu in Eq. (6), which assures that E) is

equivalent to the Bernoulli equation, i.e., the pressure con-

(top) normalized by the asymptotic linear growth ratg, as a t[nuous c_ondmon across the mterfa_ce. Equatiéh is de-
function of normalized times=kv,t. Their dimensional values rived by mte_gratlng'the' Euler equation along the lnter.face.
are also shown in the left and top scales. Dashed and dotted lind<0" the detailed derivation of E¢5), refer to the Appendix.
and thin solid lines with closed circles depict the simulation resultsSimilar equation was derived by Baket al. using the com-

for the cases in which the incident shock hits a corrugated interfacBl€x velocity potentia[16]. As we can easily see from Eq.
and a nonuniform velocity shear exists a0 on the interface, (5), the circulationI” is not a conserved quantity A#0.
respectively, while thick solid and dashed lines depict the resulfrom now on, we consider the two-dimensional case, al-
from the third-order nonlinear analysis for the cases with and withthough Eqgs.(5) and (6) also hold in the three-dimensional
out the PadepproximantsP9, respectively. case.

The system is assumed to be incompressible, therefore,
gime, the growth rates of the bubble and spike are the s(,:lmg"_le_ve!ocity potential satisfies the Laplace equation in each
However, they are not the same in the nonlinear regime aggon:
shown in the figure. The growth rate of the spike is larger
than that of the bubble in the nonlinear regime. The nonlin-
ear growth of the spike increases from its initial value and ) , )
reaches its maximum value around timekof;,t=0.2 in the We now consider the interface as a curve in theyJ
case of the vortex sheet aia,;,t=0.3 in the case of the Plane, and parametrize it using a paraméerthe Lagrang-
shocked interface, and then decays slowly compared witfRn marker,
that of the bubble. As clearly seen from the figure, the non-
linear growth rate of the bubble decays faster than that of the x=0+X(0,1),
spike in both cases. (8)

The above agreement between both cases indicates that y=Y(0,1),
the RM instability grows due to the nonuniform velocity
shear that the transmitted and reflected shocks leave at théherey denotes the vertical coordinate. We set® att
corrugated interface. We would like to mention that the use=0. Then the unit normal vectar and the unit tangential
of the linear asymptotic growth rate for the initial velocity vectort to the interface are given by following expressions:
shear gives not only qualitative agreement but also quantita-
tive agreement in both cases. It should also be noted that the . (—Ye,1+Xp) - (1+Xe,Ye)
asymptotic linear growth rate is uniquely determined from - \/% - \/%
the incident shock intensity, the Atwood number, adiabatic (1+Xe)™* Yo (1+Xe)"+ Y5
coefficients, and the initial corrugation amplitude.

FIG. 2. Nonlinear growth rate of bubbldottom and spike

Ap=0 (i=1,2. @)

€)

where the subscript denotes the differentiation with respect
to the variable. Note that Eq8) admits multivalued solu-
tions like a spiral because we do not assume yheén be
11l. NONLINEAR ANALYSIS FOR BASIC EQUATIONS solved as a function of the variabtey=Y(x:t).

A. Derivation of the basic equations The kinematic boundary conditions at the interface are

. . . . then given as
We consider the self-interaction of a nonuniform vortex 9

sheet with a density jump. The fluids have different densities, Vg ntp,V by
and therefore, the circulation in this system is not conserved fon=u.n= P T P2T 92
due to the baroclinic effect. When surface tension and gravi- p1tpz

| interfaces (10)
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B. Solution to the basic equations

The normalized initial amplitude of the interface corruga-

tion, a/\, is assumed to be small so that we can formally
expandX andY in Eq. (8) with a small parametet as

X=eXM+2x@4 ...

FIG. 3. Schematic picture of kinematic boundary conditions, Y=eYD42y@ 4 ...
whereu=(u,,u,) denote interface velocity. Note thatis not in . . )
the normal direction to the interface. and the velocity potentiag; (i=1,2) can also be expanded
as
— . p1Vp1-t+p Vst * *
et pitp2 Imertace (1D b=, €"pV=2 €"B{"(t)e "eomkx (y>0),

n=1 n=1

with the continuity condition of the normal velocity at the * * (14

interface b=, "pV=> "B{"(t)e"Ycosnkx (y<O0),
n=1 n=1

Véi-n=Ve,-n, (12)

where B{"(t) is the amplitude of thenth mode ¢{" . In

o ) order to evaluate the boundary conditionxat® andy=0
wherer, is given by (X;,Yy). It should be mentioned that the jnstead ofx=0 + X(©) andy=Y(®), we expands; in the
interface motion satisfies the continuity condition of the nor-Tay|or series ak=© andy=0 as

mal velocity,u-n=u;-n=u,-n.

Note also that Eq(11) does not indicate that the tangen- d do;
tial velocities of both fluids are continuous at the interface. Pilintertace= 10+ X X+W oY
The tangential velocity of the interface is arbitrarily deter- 0
mined and is here given as the velocity of the fluid particle 1( P, P, P,
on the interface obtained from projectiogn Eq. (6) into the + A 2t — Y2 |+ ey, XY
tangential direction. This condition is set taking into account X1 W 1o Ylo
that the initial disturbance is two dimensional, which enables 3 3
us to describe the stretching and shrinking of the interface. 4 E 07_¢i 3y <9_¢>| y3
Equations(10)—(12) with Eq. (5) are the boundary condi- 6| 5x8 ay® o
tions required to determine the nonlinear evolution of the
interface. 1 ¢ ) P
We discuss here the difference between the kinematic tol oo Y+ 5 XY2 |+,
boundary condition used in the analysis of the KH instability IX9Y |, IXIY"14
and that of the RM instability. If we can ignore the stretching (15)
and shrinking in the tangential direction as in the case of the
KH instability, we can express the profile of the interface asfrom which we obtain
a function ofx; y=Y(x,t). Then, instead of Eq(10) with
Eq. (12), the kinematic boundary condition becomes as fol-9¢{* apV
lows: “ox interface:W o,
AN d¢;  IY d; (2) (1) (1) (3)
E=$— a—ﬁ (i=12, @y AT Ty, T 9%
y X dX gx_|interface™ ™ o ay Ix |
0 0 interface
ich i i ituti 3 2 2
which is obtained by substituting :a¢§ ) ) APt )‘ (s ap? e
(=Y,.1) ax |, x|, ay |,
e O 78 i, 297 oo
ax ay
into Eq.(10) and taking Eq(12) into account. This condition ° °
was adopted in the previous works by Velikovich and Di- 1/ M . 21 2
monte(Eq. (2) in Ref.[11]) and Zhancet al(Egs.(3) and(4) ts 2 (X7 PVvE (Y)9)
in Ref.[12]). However, it is not adequate to follow the tem- 0 0
poral evolution of the stretched interface as found in the RM P
instability. We show the boundary conditions given by Egs. +—— | XWy@ 4
(10) and(11) schematically in Fig. 3. axay
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and so on. Here the subscript 0 indicates that the value of the - A ) Aa T )
function is taken ak=0 andy=0. &= |5 O=3A)+ —5—(5-A9
From now on we introduce the dimensionless variables

2

E=kX, 7=kY, 6=k0®, r=k?Bt=kv iyt and ¢;=¢; /B, a’t ol
and describe all quantities by using them, wheBy=uv;, * 8 (3—8A%)|sind,
=—kB{Y(0)=kB{(0) is the asymptotic linear growth rate
given by Eq.(1).
Taking into account the form af andt in Eg. (9), and @) 42, a2 7 cos %
substituting into Eqs(5), (10)—(12), we have at first order; Tt g/ oS
£N=—Arsing,
(16) Sl PO Ly
M= (a+ 7)cosé, R 2/ "2 )
5
wherea is the dimensionless initial amplitude of the inter- +a’7| A%— g |coso, (20)
face, i.e.a=2mal/\. It should be noted that the Lagrangian
marker on the interface moves with a finite velocity of
a¢W/gt=—Asin g in the x direction if the Atwood number 2 7A2 2
is finite. Note also that Eq16) denotes an ellipse. The nor-  y$)=| — |1+ T) —ar| 1+ )— a?AZ|cos 3,

malized circulationy=T"/k is given as

y®=—2 cos, (17) 2 A2
yg}):[ - ?(1+A2) — ar( 1— 7) - aZAZ}cose,
at this order,®, 97N/ a1] 4o » in Eq.(16) and ¥ in Eq. 21)
(17) coincide with the initial amplitude of the interface cor-
rugation, the asymptotic linear growth rate and the initial
circulation on the interface at=0, respectively.

Similar calculations yield at second order

where we also set the initial condition thag{>)(0)
=7(0)=0 (m=1.3).

By introducing the normalization time with the use of the

1—A? 1-2A? asymptotic linear growth rate, i.&y i t, all of the physical
(2) — i (2) — . . PV lin .
&= 4 + > a7 sin2¢, &°=0, variables are uniquely determined only with the Atwood
(18) numberA and the initial corrugation amplitude of the inter-
2) AaTt ) A7l Aa face a.
ny = > C0S20, 75 :T+ 7+C T,

where the superscript and subscript denote the orderaof

IV. DISCUSSIONS AND COMPARISON OF ANALYTICAL
RESULTS WITH SIMULATIONS AND EXPERIMENTS

the mode number generated due to the nonlinear interaction,

respectively. The integral constaftin Eq. (18) is deter-
mined to beC= —Aa/2 so that the initial velocity of{? is

0. Here we set{?(0)=7?(0)=0 (m=0,2), i.e., we as-
sume that the higher harmonics including the Oth mode d

In this section, we use the same values of the parameters,
such as the initial corrugation amplitudeand the Atwood
numberA, as those used in Sec. Il otherwise specified to
c():ompare analytical results with simulations and experiments.

not exist initially. Note that the vertical componen@z) in

Eq. (18) is derived from the mutual interaction betweghy
and 7™, which contributes to the difference of the growth
between the bubble and spike as will be discussed in Secs

IV A and IV B. The circulationy(® is given as

A. Nonlinear growth rate

First, we discuss the nonlinear growth rate of the bubble
and spike. From Eqg16), (18), and (20), the velocities of
bubble d 7,/ dT and spikednsp/d7 are given within the
third-order nonlinearity as

Y@= —A(a+ 7)cos 20. (19
3 _
_ I Mpub an®
At third order, we have ar 221 ar lo=m
A7 7Aat? 1
®= S (1A + ——(1-A?) =(—A2+§ 2+ (—2A%a+A+a)r
2
a‘r ) 3 1

+—3 (11— 12A?) |sin 36, + —2A2+§ a2+§Aa—1,
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I i 3 an® and spike_are not_the same in the nqnlinear regime as
722 e lo=0 observed in the smul_mmns. T_he nonlmegr growth rate
=1 depends also on the initial amplitude of the interface corru-

1 gation, @, as shown in Eq(22). It should be also noted that

= A2_§ 7+ (2A%a+A—a)T the proportionality of the linear growth rate to the initial
corrugation amplitude has been included in the normalized

+l2a2= )02+ aast (29 fime. N

2 2 ' The difference between the simulation results and the ana-

where all modes appeared in each order are included ilytical results in Fig. 2 can be improved by using the Pade
7. Equation(22) shows that the growth rates of the bubble approximantsP$ [17,18 given as

0 agub
Polbub=r 1 - ,
apypl A%— 5) +(—2A%a+ A+ a)?| P—apy — 2A%a+ A+ ) T+ad,,
0 _ azpk
P2|spk_’ 1 T y
—aspk(Az— 5) +(2A%a+A—a)?| P —agp 2A%a+ A—a) T+ ad,,

whereP|,,, and P2|5pk denote the Padapproximants with  shock Mach number in the experiments is very high,
respect to7 7,/ I7 and dngpil d7 in Eq. (22), respectively, =15.3_, the analytical solutions agree fairly well with the
and app=[(—2A%+3/2)a?+Aal2—1] and aspkz[(ZA2 experiment.

—3/2)a?+ Aal2+1]. The coefficients are derived from Eq Figure 2 shows that as observed in the simulations, the
22) ' " analytical growth rate of the bubble decreases monotonously,

: . . 0 while that of the spike increases once and has a peak at a
_ The result using the Padgproximants?; is also Shown o ain time. This peak indicates that the velocity of the spike
in Fig. 2. We can see that the analytical results of the non-

linear growth rates agree quite well with the simulation re- time kvjjnt

sults for relatively long time. All of the previous works that 0 1 2 3 4 5 6
used the impulsive model had to introduce a free parameter 50 T T T T T T T
to adjust the nonlinear growth rate. However, our model can
uniquely determine the nonlinear evolution of the RM insta-

bility from the initial corrugation amplitude of the interface, aor
the Atwood number of the interface before the incident shock
hits, and the incident shock intensity. 30 |

We now compare our nonlinear prediction with experi-
ments by Dimonteet al. in Ref. [19] where a rarefaction
wave was reflected and the phase inversion of a interface 20 |
occurs. Taking this fact into accouft5], we evaluate the
post shock variables such as the Atwood number

M [um]

=0.584 26, the corrugation amplitudia/)\ = —2.0482/100, 10 -
and the linear growth rate;;,=1.0542< 10° cm/sec. (For

details of the experiments, the reader is referred to Ré, 0
in which they showed that the transmitted shock detached the 0

interface about 2.3 ns. Therefore we choose this time of the
experiment ag=0+ in our model) In Fig. 4, we plot the
bubble and spike amplitudes as functions of time and com- g 4. comparison of analytical nonlinear growth rate with the
pare with the experimental points. It should be noted that insxperimen{19]. Dashed and dotted lines depict bubble and spike
the experiments they did not resolve the bubble and spikgmplitudes obtained using the Padgproximants, respectively,
separately but showed only Fourier mode amplitudes. Therephile the solid line depicts their average. Open and closed circles
fore, we also plot the amplitudes taken an average betweeshow experimental results in Fig. 15 in R¢19] with different

the bubble and spike. In spite of the fact that the incideninethods of the measurement.

time [ns]
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=0.05, the displacement of the markers from theaxis
(open circles in left figureis relatively small compared with
other two cases. This is due to the finite transition time re-
quired for the shocked interface to reach the asymptotic lin-
ear growth, as mentioned before. We show the motion of the
Lagrangian markers with arrows. As is obvious from Fig. 6,
the Lagrangian markers move in tkedirection (horizontal
direction as well as in they direction (vertical direction.
The analytical results agree fairly well with the simulations.
FIG. 5. Dependence of the maximum nonlinear growth rate of The stretching of the interface can be calculated from

spike on Atwood numbeA and initial corrugation amplitude of ds/dr, wheres=\[ 0+ &(6)]°+ n(0)*. dsldr at 7=0.8 is
interfacea. shown in Fig. Ta). At this time, the stretching of the inter-

face in the spike is much larger than that in the bubble. It
has an extremal value, which always exists for the case thahould be, however, noted that the maximum of the interface
A<1/y2 within the third-order approximation as we see stretching appears not at the top of the spike but at the sides
from dnsp/d7 in Eq. (22). When the Atwood number i near the top. The double peaks a9 shown in Fig. 7a)
=1//2, the velocity of the spike does not have the extremahre due to the maximum stretching of the interface insxthe
value and the velocity diverges before time=1. This di-  direction in addition to the direction as can be seen in Fig.
vergence is also found in the result of Velikovich and Di- 7 (b), which shows?&/d7. Namely, at this time the tip of the
monte[11] in which they assume that the Atwood number gpike starts to expand in thedirection to form the mush-
equals 1. Since Eq22) is a quadratic equation with respect qqm |t is noted thav¢/dr has both positive and negative
to 7, we can calculate _the maximum values of the nonlineag ;i ,es as shown in Fig.(), which corresponds to the di-
growth rate for the spike. We show the dependence of the, o of the interface stretchingr shrinking in the x co-
nmuaéll;?;rjrgn:j/atlr?:ir?i];i;an?plli‘t(S dgrgf"\;thhe Eﬁ:grgc]ettirﬁjm?d ordinate as seen in thecomponent of the arrows shown in
A . P ga Ior]Fig. 6. In the regions wheré?¢/dr99<0, the interface is
in Fig. 5. It is clearly seen that the larger Atwood number . o L .

contracted in thex direction, while in the regions where

leads to the larger nonlinear growth rate, while the large’, . . N S
amplitude of the initial corrugation decreases the maximun{ 5/&7’?0>0’ the interface is gxpandlng n trxedlrectlon..
In Fig. 8, we compare profiles of the interface obtained

values of the nonlinear growth rate. The dependence of the M )
nonlinear growth on the Atwood number will be also dis- ffom our boundary conditions EqeL0) and(11), with those
cussed in the following subsection. obtained from the boundary condition used by Zhang and

Sohn[12], i.e., EQ.(13). It should be mentioned that Zhang
and Sohn have expanded up to the fourth order, but we here
use only up to the third order. We can see that the interface is
In our model, the interface is allowed to expand and constrongly stretched in the tangential direction at the top of the
tract in the tangential direction. We observe the motion of thespike in the case shown in Fig(e8 compared with that in
Lagrangian markers in the simulations and compared it withthe case shown in Fig.(8). Note that at timer=1 in Fig.
the analytical results. We calculate the points of the Lagrangg(b), the bubble structure is strongly deformed and the
ian markers by substituting Eg&l.6), (18), and(20) into the  bubble curvature changes its sign, which is not observed in
relation of (x(6),y(8))=(0+323,M0(6),22 ,70(6)).  the simulation. The previous workd1,12 did not include
Figure 6 shows the simulation results of the shocked interthe motion of the interface in the tangential direction, which
face (left) and the vortex shedmiddle), and the analytical may cause their failure to resolve the bubble structure at
result (right). For the shocked interface at early time of =1.

B. Profile of bubble and spike

simulation simulation theory
(shocked interface) (vortex sheet) (x(8,%),y(6,t))

n

. ,,,z,\o\: . 2 ,,},'\o\: Ul«%

e+§(e)-?°\ °\.°\."" -1 Ii 0\."’ -1 0 1 ‘:’/o ./o } 6+5(8)

-1+
FIG. 6. Motion of the Lagrangian markers, where the horizontal axis is taken-franto 0 for the case of shocked interfageft), from

—r to 0 for the cases of vortex she@iddle), and from 0 tosr for analytical resul{right). White and black circles depict positions of the
Lagrangian markers at time of=0.05 andr= 0.8, respectively.
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FIG. 7. (a) Rate of change in dimensionless length of the inter- -05F -
face, ds/dr as a function ofd+ £(6); and (b) deviation of the
interface in thex direction, 9¢/dr as a function off.
-1 L L L L L L
The boundary conditions, Eq&L0)—(12), correspond to -3 2 -1 0 1 2 8
the following “modified” Birkhoff-Rott equation(it is often 0
taken asZ—Z' in the denominator in the integral instead of
Z'—7) [20,21): (b)

9Z* 1 wds  Ax ZZ FIG. 8. Profiles of the interface with different boundary condi-
_— -— (23 tions: (a) given by Egs.(10) and (11), y= » againstx= 0+ £(6);

ot 2m) z'—7z 2 sy and (b) given by Eq.(13), y= 7 againstx= 6, where the initial
corrugation amplitude o&=0.02< 27, the Atwood number ofA
=0.376; six lines are from near the=0 axis at different times of
7=0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively.

whereZ(t) =x+iy, andZ’(t)=x’+iy’ denotes the position
of the interface which is regarded as a vortex shégtis the
complex conjugate o andxds=dI is the unit intensity of
the vortex sheet with the line elemeds related asZ,Z} fective to investigate the asymptotic behavior of the vortex
zsg_ An analogous equation has been derived in Reffito ~ sheet for large. The analysis in terms of the Birkhoff-Rott
investigate the motion of free surfaces. The second term ofduation will be published elsewhere.

the right hand side of Eq23) gives rise to the interfface ~ We now discuss how the density jump affects the nonlin-
motion in the tangential direction. Note that the second terngar growth and the profile of the bubble and the spike. In Fig.
is proportional to the Atwood numbéer and the vorticityx. 9, we show the profiles of the interface with different At-
Sincex= VT changes its sign along the interface, the expanwood numbers ofa) A=0.2, and(b) A=0.6 with the same
sion and contraction of the interface occur locally in the tan-nitial corrugation amplitude ofx/A =0.02. It can be seen
gential direction only for a finite Atwood number. We can that the larger is the Atwood number, the faster is the non-
easily check that the modified Birkhoff-Rott equation has thdinear growth of the spike, while the slower is that of the
same solution as given by E¢L6) by performing the com- bubble. This result indicates that in the nonlinear regime, if
plex integral of Eq.(23). The Birkhoff-Rott equation is ef- we consider a fixed mass density of the heavy fluid, as an
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FIG. 9. Profiles of the interface with different Atwood numbers:
(& A=0.2 and(b) A=0.6, from nealy=0 axis atr=0, 0.2, 0.4,

0.6, 0.8, and 1.0, respectively, where all parameters except the At-

wood number are the same as Fig. 8.

example, the heavy materigpike penetrates faster into the

light fluid as the decrease of the light fluid mass density,

while the light fluid (bubble penetrates slower into the
heavy fluid. It should be noted that the normalized time

=kv )t includes the asymptotic linear growth rate that de-
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________

normalized vorticity
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o
>
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FIG. 10. Normalized vorticityV y along the interface as a func-
tion of 8+ £(6) at time 7=0.05 (dashed lingand 0.8(solid line).

due to the motion of the interface in the tangential direction,
which is proportional to the Atwood number as shown in the
second term in the right hand side of HE&3). Namely, as
described befordin Fig. 6), the motion of the Lagrangian
markers in thex direction increases with the increase of the
Atwood number, which results in the narrow spike and the
flatten bubble as the increase of the Atwood number.

C. Circulation and vorticity on interface

In the linear regime of the instability, the circulation on
the interface does not change as given by @4) after the
instability reaches the asymptotic linear growth rate. How-
ever, as shown in Ed5), the nonlinear terms drive the tem-
poral evolution of the circulation along the interface with the
finite Atwood number and thus generate higher harmonics of
the circulation even if only a single mode exists initially. In a
recent attempff22] to apply a single-mode approximation to
a two-fluid system in order to derive a heuristic drag model
solution [23], the boundary conditions were not satisfied,
which will be discussed in detail elsewhere. Figure 10 shows
the vorticity distributions along the interfaces=dy/ds
=(x3+y3) " Y2dy/dg. They are calculated from Eq$l7),
(19), and (21). As a result of the continuous change of the
vorticity on the interface, the vorticity distribution on the
interface atr=0.8 becomes quite different from that at
0.05. Initially, there is only one mode. However, new local
maxima and minima of the vorticity appear on the interface
at 7=0.8. The third harmonics of the vorticity leads mainly
to these local maxima and minima.

The absolute values of the maximum and minimum vor-
ticities at 0+ £(6)=+0.82 (/== 0.80) in Fig. 10 increase
very rapidly with time, while those of the local maximum
and minimum vorticities ab+ £(0)= =+ 1.38 (I=+1.36) in

pends on the density ratio across the interface as given in E¢e same figure decrease further with the increase of time.
(1). Therefore, this dependence of the growth on the Atwood/Ve here call the former as poift and the latter as poir®,
number is not due to the dependence of the linear growth rates indicated in the figure. It should be noted that the points,
on the Atwood number, but due to the nonlinearity. both SandO, change their position on the Lagrangian coor-
The profiles of the bubble and spike are symmetric in thedinate with time. Although the theory breaks up for large
linear theory, but not any more in the nonlinear regime. Wewe should mention the following facts observed in the simu-
see in Fig. 9, that the larger is the Atwood number, the nartation in which we can track the Lagrangian markers. Figure
rower is the width of the spike, while the more flatten is thell shows some of the Lagrangian markelsts at 7=6 and
top of the bubble. This dependence of the nonlinear profiled2 corresponding to the density profiles shown in the right
of the bubble and the spike on the Atwood number is mostlytwo figures in the bottom of Fig. 1. They were initially dis-
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FIG. 11. Lagrangian markers for the case of the vortex sheet at
time of 7=6 (left) and 12(right). They are initially distributed with
equal distance between neighboring points. The gray scale of the
dots indicates the component of the vorticityV Xv; white and
black correspond to positive and negative values, respectively.

tributed with an equal distance between neighbor points (b)
along the interface, i.e.§0=2x/N, where N=512 is the
number of the markers. Therefore different distances be- FIG. 12. Circulation on the interfac¢a) temporal evolution of
tween neighbor Lagrangian markers in Fig. 11 indicate tha{ »>0d (solid ling) and average vorticity per unit interface length
the stretching and shrinking of the interface occurs locally/ «>oxdS/Jds (dashed ling both are normalized by their initial
The stretching of the interface occurs mostly at the oute@luesi(b) dependence of,..qdy on the Atwood numbeh and the
surface of the mushroom and at the joint between the musHP!tia! corrugation amplitudar at 7=0.8, wheref,.ody denotes
roomumbrella and its stock. The shrinking of the interfacethe circulation/ xds restricted tox>0.
occurs mostly at the inner surface of the mushroom spiral.
We can also see other points where the interface is locallghown in Fig. 11a) at 7=6. However, we can see in Fig.
stretching or shrinking. 11(b) at =12 that the points with a different darkness ap-
By observing the trajectories of the Lagrangian markerspear on the interface. We would like to emphasize that the
we find that the poinSin Fig. 10 turns out to be the tips of different darkness appears near the p@nin Fig. 11, i.e.,
the spiral in the fully nonlinear phase of the instability asblack in the white(left), and vice versdright), near the joint
shown withSin Fig. 11. Namely, the maximum and mini- of the mushroom umbrella and its stock. Namely, in the
mum of the vorticity shown witl§in Fig. 10 associate with strongly nonlinear regime of the instability, such asrat6
the singularity that appears at the tips of the spiral in theand 12, the vorticity near the poi@ has an opposite sign
system with the finite Atwood number. On the other handfrom its initial value. It indicates that the decrease of the
the pointO in Fig. 10 moves to the joint of the mushroom absolute value of the vorticity shown &sin Fig. 10 results
umbrella and its stock as shown within Fig. 11. It should in the opposite sign of the vorticity appearing at the joint. We
be noted that the poinSandO in Fig. 10 correspond to the would also like to mention that the appearance of the oppo-
points near where the absolute valueddf d= has a maxi- site sign of the vorticity near the poif® may cause the
mum value and¢é/dr=0 at 7=0.8, respectively, as seen in generation of the double spiral structure of the mushroom in
Fig. 7. Namely, at the poirn, the interface starts to expand the RM instability, because the vorticity with the opposite
in the x direction atr=0.8, while the poinO does not move sign induces the stretching of the interface in the tangential
much in thex direction after that time. direction, as clearly seen from the comparison of the dis-
The gray scale of the dots in Fig. 11 indicates fttom-  tances between the neighboring Lagrangian points near the
ponent of the vorticity,V Xv, on the Lagrangian markers, point O at = = 6 and with those at=12 in Fig. 10.
which is calculated from the linear interpolation of the ones Finally, we discuss the increase of the circulation on the
on its nearest four grid points in the simulation. Black andinterface with time and its dependence on the Atwood num-
white correspond to negative and positive values of zhe ber A and the initial corrugation amplitude in the RM
component of the vorticity, respectively, as scaled in the figinstability. Since we assume initially a sinusoidal circulation,
ure (arbitrary unit$. It should be noted that the sign of the its integration along the interface over the wavelength be-
component oV Xv has the opposite sign & y, defined in  comes zero. Therefore, we calculate time evolution of
Sec. lll. Since the initial vorticityVy on the interface is [,.ody for only a region wherey>0 that denotes the cir-
negative in6<0, while that is positive ind>0, as shown culation [ «ds restricted tox>0, which is shown with solid
with the dashed line{=0.05) in Fig. 10, blight dots appear line in Fig. 12a). We can see the rapid increase of the cir-
mostly in the left half of the interfacef<0), while dark culation in the nonlinear regime of the instability. Since the
dots appear mostly in the right half of the interfage0) as  total length of the interface increases also with time, the
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increase off - ody does not always indicate the increase ofthe analytical results with the simulatiofiglach number of
the vorticity along the interface. Dashed line in Fig.(d2 2) and the experiment$Mach number of 15)8show the
shows the average vorticity per unit length on the interfaceyalidity of the model.

Jkds/[ds for «>0. The values shown in the figure are

normalized by their initial values. It is clearly seen that both ACKNOWLEDGMENTS

the circulation and the average vorticity per unit length on
the interface increase with time in the nonlinear phase of th‘i
RM_ instability. The increase of the C|rcu_la_t|on at early time IS | tions were done on NEC SX-5 at Cybermedia Center,
mainly due to the increase of the vorticity on the mterfaceoSaka Universit

per unit length, while the increase at later time is mainly due
the increase of the interface length.

In Fig. 12b), we show the dependence ff- ,dy on the
Atwood number and the initial corrugation amplitude. Since In this appendix, we give a simple derivation of E§).
[ ,=0dy increases with time, the result shown in Fig(ds  Using relation(6), the Lagrange derivative af; (i=1,2) is
calculated at the normalized time=0.8. As clearly seen in expressed by
the figure, the circulation increases faster with the increase of
both the initial corrugation amplitude and the Atwood num- Du; dy;
ber. However, the increase of the circulation depends Dt ot
strongly on the initial corrugation amplitude compared
with the Atwood numbeA. This can explain the simulation where
result[13] showing that the larger is the initial corrugation
amplitude, the faster is the speed of the roll up of the spiral at Di 4 K K
the tip of the mushroom. It is interesting to mention that the Dt UV, w=ats, Uu=0-5. (A2
increase of the Atwood number accelerates the nonlinear
growth rate of the spike and suppresses the nonlinear growtiategrating Eq(A2) along the sheet, we have fag
of the bubble as shown in the preceding section, while the

The authors thank Professor N. J. Zabusky and Professor
G. Wouchuk for their fruitful discussions. Computer simu-

APPENDIX

_ Diui _
+(u-Vyu= ﬁﬂ(u—ui)-V]ui , (A1)

increase of the initial corrugation amplitude enhances the D D,u; Ak
increase of the circulation and thus accelerates the roll up pt Uy-ds= Dt—-ds+ -5 W -V ug-ds
motion of the spiral.

V. CONCLUSIONS +f uz- (ds- Vu), (A3)

With the assumption of incompressible and irrotationalwhere we used the following relation:
fluids, we have developed an analytical model for a weakly
nonlinear evolution of the RM instability. The theory shows D Ds — _
that it is treated as a nonlinear self-interaction of a nonuni- adSZdazduzdsVu
form vortex sheet with a density jump. With the proper ki-

nematic boundary conditions, the Lagrangian description oy the third term on the right-hand side of H&3). Here,ds

the vortex sheet enables us to follow its nonlinear dynamicsg the line element vector along the shekts identical toD
sgch as its Ioca_\l stretching and_sh_rlnklng in the tangentla!)n the sheet, an&u denotes a tensor quantity such as
direction. By using the asymptotic linear growth rate of the — . )

RM instability, we have shown that the nonlinear evolution?!j/dXk- The second term on the right hand side of &)

of the instability is uniquely determined from the initial cor- &N be rewritten as

rugation amplitude of the interface, the Atwood number, and

the incident shock intensity. f Hq_ A_K_ul) Vuy|-ds
The theory reveals various nonlinear properties of the RM 2
instability. For example, the increase of the Atwood number A
enhances the nonlinear growth of the spike, but reduces the :f (q—uy)-Vu;-ds— _f (k-V)uy-ds.
nonlinear growth of the bubble. The larger is the Atwood 2
number, the narrower is the width of the spike, while the (A4)

more flatten is the top of the bubble. The density jump across

the interface induces local increase and decrease of the vaReturning to the third term on the right-hand side of Eg.
ticity on the interface. The larger is the initial corrugation (A3),

amplitude, the larger is the nonlinear increase of the vortic-

ity. The theory quantitatively gives those dependences on the — A
Atwood number and the initial corrugation amplitude. Up-(ds Vu)= | up-(ds Vo) =5 | up-(ds V),
Although we have constructed the analytical model within (A5)

a weak incident shock limit, the theory can be applicable
even for a relatively large Mach number. The agreements ah which
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1
f u1~(ds~V:c)=§f K~(dS~VK)+jQ'(dS'VK).
(A6)

PHYSICAL REVIEW E 67, 036301 (2003
which is obtained from the irrotationality X u;=0 in each
regioni.

Taking into account Eq(A9) and subtracting Eq(A8)
from Eq. (A7), we have

If the gravity and the surface tension can be neglected, we

have from Eqs(A3)—(A6) that

Dfd
Dt Y1-ds

= 1fV d 1f V)k-d 1J V)g-d
= o p-as—7 (1 V)k ST 5 (,-V)g-ds
AJ V)qg-d Af V)k-d
—5 | (e V)g-ds—7| (k- V)k-ds
1
+fq-Vq-ds+§f k-ds-Vq

A A
— Zf K- (ds- Vi _Ef g-(ds-Vk), (A7)
where we used the Euler equation
auy
— T Vjup=-— —Vp

Analogous calculations far=2 lead to

Dt U,-ds

= 1JV d 1] V)k-d 1] V)qg-d
= 5 p-ds 1 (K- V)£ s+§ (k-V)g-ds
A A
—Ef (K~V)q~ds+zf(K~V)K-ds+fq~Vq-dS
]
5| wds q+z k- (ds- Vi)
A
_EJ g-(ds-Vk). (A8)
Adding the third term and the seventh term in E47) to
1f V)qg-d 1J ds-V
3 (k-V)Q- s+§ Kk-ds-Vq
1fd \% 1f ds-V
5 S (k- )Q+§ K-ds-V(Qq
1
=§f(:c><ds)~v><q=0, (A9)
where we used the relation

1
V><q=§V><(u1+u2)=O,

Df q Dj q
D] Y SDt U,-ds

1JV d+1fV d Af( V)k-d
P1 P p2 P 2 “ “

— gj K- (ds V)k

(5“”“’ dS"UW

—j K-(dS-V)K}—Af K- (ds-V)k. (A10)

The second term on the right-hand side of the last equality in
Eqg. (A10) leads to

_g[f (K'V)K'ds_f K-(dS-V)K}

A
:—E(KXdS)'VXK

= (kX ds)-(VXUu)—(kxds)-Vxq=0,

from which we have

b d Df d
D_t u, S_D_t U,-as
=p1_p2f Vp.ds—Af w- (ds- V) i
P1P2
P17 P2 A
= - oK K. All
P1P2 P 2 ( )

Taking into account that the left-hand side of EHé1l)
equalsDI'/Dt, we obtain

DI' pi—p> A

= ——K- K. Al2
Dt pip2 P72 (A12)
Now adding Eqs(A7) and (A8) to
b d > d
o[ v dst o upeas
_ Do
Dt
pitpz 1
=- ——k-k+Q-0—Ak-Q. Al3
1P P=2 q-q q (A13)
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By deleting the pressurp from Egs.(A12) and (A13), we  Kelvin’s circulation theorenDI'/Dt=0 is obtained. We add

obtain Eq.(5): that Eq.(5) equals to the Bernoulli equation
DI’ DO 1 1 A dpy 1 dp, 1
—=2A| — — —0-0— — K- K+ —K- X _ 2| _ 2
Dt Dt 2q q 8K K 2K q terface P1 ot +2(V¢1) P2 ot +2(V¢2) ’

Note that if we setA=0 in this equation, the well-known taking into account the relatiofi= ¢;— ¢.
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