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Nonlinear evolution of an interface in the Richtmyer-Meshkov instability
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The linear theory of the Richtmyer-Meshkov instability derived by Wouchuk and Nishihara@Phys. Plasmas
4, 3761~1997!# indicates that the instability is driven by the nonuniform velocity shear left by transmitted and
reflected rippled shocks at a corrugated interface. In this work, the nonlinear evolution of the interface has been
investigated as a self-interaction of a nonuniform vortex sheet with a density jump. The theory developed
shows the importance of the finite density jump and the finite initial corrugation amplitude of the interface. By
introducing Lagrangian markers on the interface with proper kinematic boundary conditions, it is shown that
stretching and shrinking of the interface occur locally even in the tangential direction. This causes deformation
of bubble and spike profiles depending on the Atwood number. The vorticity on the interface for a finite density
jump is not conserved in the nonlinear regime. Our results suggest that the spiral structure of the spike is due
to local increase and decrease of the vorticity on the interface. Nonlinear analysis shows that the large initial
amplitude of the corrugation results in rapid increase of the vorticity, which may also explain the fast roll up
motion of the spiral for large amplitudes. With the use of the asymptotic linear growth rate, the nonlinear
evolution of the instability is uniquely determined from the initial corrugation amplitude of the interface, the
Atwood number, and the incident shock intensity. There is no need to use an impulsive formulation. The
analytical nonlinear growth agrees well with the experiment@Dimonte et al., Phys. Plasmas3, 614 ~1996!#.
The theory reveals nonlinear properties of the instability, such as the time evolution of the interface profiles and
the vorticity on the interface, and also their dependence on the Atwood number and the corrugation amplitude.

DOI: 10.1103/PhysRevE.67.036301 PACS number~s!: 47.20.Ky, 47.20.Ma, 47.32.Cc
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I. INTRODUCTION

When a shock wave passes through a corrugated inter
between two fluids with different densities, the perturbed
terface is deformed and eventually rolls up like a mushroo
This phenomenon is known as the Richtmyer-Meshk
~RM! instability @1–5#, and the interface perturbation grow
linearly with respect to timet in the linear regime. The RM
instability is of direct importance in inertial confinement f
sion any time a shock wave crosses layers of materials
different densities.

A lot of researchers including Richtmyer have tried
explain this instability with an impulsive gravitational acce
eration term. However, Wouchuk and Nishihara formula
the RM growth rate@6,7# indicates that the RM instability
essentially grows due to vorticity left by transmitted and
flected rippled shocks~or reflected rarefaction! at the corru-
gated interface. This is also confirmed from our simulatio
in this paper. The vorticity may not be uniformly distribute
along the interface when the incident shock passes thro
the corrugated surface, which leads to local stretching
shrinking of the interface. As will be shown below, when t
density jump is finite across the interface, the stretching
shrinking of the interface occur even in the tangential dir
tion. This causes different profiles for bubble and spike
pending on the Atwood number. In linear theory, after t
instability reaches the asymptotic linear growth rate, the v
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ticity on the interface does not change with time. Howev
the vorticity is not conserved in the nonlinear regime for
finite density jump. A spiral structure of the spike appears
the strongly nonlinear regime of the instability@3#. Nonlinear
increase of the vorticity may cause formation of the spir
Therefore, we need a nonlinear model so that we can
scribe the nonlinear evolution of both the interface profi
and vorticity on the interface self-consistently with the de
sity jump.

When the incident shock is strong, the bulk vorticity ge
erated behind the transmitted shock cannot be ignored. N
ertheless, when the shock is weak, the linear RM instab
grows only due to the vorticity that the shocks left at t
interface@6–8#. This indicates that the nonlinear evolution
the RM instability can be treated as a vortex sheet with
spatial inhomogeneity.

Regarding the initial disturbance, we can classify t
Rayleigh-Taylor~RT! instability, the Kelvin-Helmholtz~KH!
instability, and the RM instability as follows.

~1! There exists no vorticity on the interface att50 in the
RT instability.

~2! A homogeneous~one-dimensional! strong vorticity
distributes on the interface att50 in the KH instability.

~3! There exists an inhomogeneous~two-dimensional!
weak vorticity on the interface in the RM instability.

The inhomogeneous vorticity distribution in the RM in
stability comes from the fact that the initial interface is o
lique to the incident shock. In Ref.@9#, the interface growth
in the RT and RM instabilities is explained from the vorte
viewpoint: Zabusky solved numerically a vorticity equatio
derived from a compressible Euler equation and investiga
©2003 The American Physical Society01-1
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MATSUOKA, NISHIHARA, AND FUKUDA PHYSICAL REVIEW E 67, 036301 ~2003!
the bubble and spike structures together with their gro
rates in detail. There are also some works in which the in
face is treated as a vortex sheet@10#, the sheet is split into
point vortices and the temporal evolution of the interface
investigated numerically. However, following two poin
cannot be explained with their point vortex model, t
stretching or shrinking of the sheet described above and t
poral evolution of circulation due to the finite Atwood num
ber in this system. There are some other approaches inv
gating the temporal evolution and growth rate of t
interface with a weakly nonlinear analysis@11,12#. Their
weakly nonlinear analysis, however, assumes that the in
face moves only to the normal direction in spite of the fa
that the interface also expands and contracts in the tange
direction.

In this paper, we parametrize the interface with Lagra
ian markers. We then show that for nonuniform vorticity
the interface with a finite density jump, the interface expan
and contracts even in the tangential direction. We a
present proper kinematic boundary conditions in order to
scribe the nonlinear evolution of the interface with the te
poral evolution of the circulation on the interface. Compa
son of analytical results with simulations indicates that lo
increase and decrease of the vorticity cause formation of
spiral structure in the strongly nonlinear regime of the ins
bility. Nonlinear analysis also shows that the increase of
vorticity depends strongly on the initial corrugation amp
tude, which may explain simulation results@13# that the large
corrugation amplitude leads to fast roll up motion of t
spiral.

Here we do not adopt the impulsive gravitational acc
eration derived phenomenologically by Richtmyer, since
velocity shear at the interface is not uniquely determin
only from the impulsive acceleration, which causes the f
ure of the impulsive model. Instead, the asymptotic lin
growth rate derived in Ref.@7# is used to initialize the non
linear model. As a matter of fact, the use of the linear grow
rate derived in Ref.@7# is restricted to low Mach numbers o
the incident shock. In this way, the generation of vorticity
fluids can be neglected. Roughly speaking, shock M
number should be less than 2. However, there could be
ations in which fair agreement with simulations or expe
ments can be found at a higher Mach number. We also
sume that fluids are incompressible, which is verifi
independently to shock Mach number in an asymptotic st
of the linear growth@6#. Initial amplitudes of the interface
corrugation are assumed to be finite but small compared
its wavelength. Because of Taylor series expansion emplo
in the analytical calculation, the mushroom structure of
spike cannot be resolved.

In Sec. II, we show that the nonlinear evolution of the R
instability can be described as a self-interaction of a nonu
form vortex sheet by comparing its nonlinear dynamics w
that of a shocked interface with the use of two-dimensio
hydrodynamic simulations. In Sec. III, we develop a nonl
ear theory that describes the nonlinear evolution of the n
uniform vortex sheet with the density jump across it. In S
IV, we show results of the nonlinear growth rate and profi
of bubble and spike, and the nonlinear evolution of the
03630
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culation on the vortex sheet comparing with simulations a
previous works. We also discuss the dependence of th
properties of the RM instability on the Atwood number a
on the initial corrugation amplitude. We summarize our wo
in Sec. V.

II. SHOCKED INTERFACE AND NONUNIFORM VORTEX
SHEET

As mentioned in the Introduction, the RM instability oc
curs due to the vorticity left behind the rippled shocks af
the incident shock passes through a corrugated interf
This indicates that nonlinear dynamics of the unstable in
face can be treated as a self-interaction of a nonuniform v
tex sheet with a density jump. With the use of tw
dimensional hydrodynamic code IMPACT2D@14#, we have
compared two cases; one is the case in which an incid
shock hits a sinusoidal interface between two different flu
from a light fluid to a heavy fluid, and the other is the ca
that the velocity shear is initially imposed on the sinusoid
interface without the incident shock.

We suppose that aty50 there is an interface that sep
rates two fluids: light fluid ‘‘1’’ (y.0) and heavy fluid ‘‘2’’
(y,0). A shock propagating through the light fluid wit
velocity ui (,0) hits the interface att50. The fluid velocity
behind the incident shock isv1 (,0) for t,0. At t501,
the shock is transmitted into fluid 2 that moves with veloc
ut (,0) and the density behind the transmitted shock isr2.
On the other hand, in fluid 1 another shock is reflected.
this paper, we consider only the case of the reflected sh
but the results are the same for a reflected rarefaction.
reflected shock velocity and the density behind the reflec
shock areur (.0) andr1, respectively. As a result of the
shock-interface interaction, the interface moves with veloc
v i (,0).

In the latter case, i.e., the velocity shear on the sinuso
interface without the incident shock, we have used followi
initial conditions with knowledge of the asymptotic linea
growth rate of the RM instability@7#. With the assumption
that in the asymptotic stage both fluids become incompre
ible and irrotational, the theory shows that the asympto
linear growth rate is given by

v l in5
r1dv1x12r2dv2x1

r11r2
, ~1!

wheredv1x1 anddv2x1 are tangential velocity perturbation
behind the reflected and transmitted shocks att501, re-
spectively. They are uniquely determined from the initial a
plitude of the corrugation and the incident shock intens
Let us assume that the interface has an initial corrugation
a form y5â0cos(kx), where â0 is a corrugation amplitude
before the shock hits the interface,k52p/l is the perturba-
tion wave number andl is the wavelength. If the initial
amplitude is very small compared with the wavelength,
ripple amplitudes of the transmitted and reflected sho
fronts are, respectively, approximated as,

â t5â0~12ut /ui !, â r5â0~12ur /ui !. ~2!
1-2
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NONLINEAR EVOLUTION OF AN INTERFACE IN THE . . . PHYSICAL REVIEW E 67, 036301 ~2003!
The shock front ripples lead to the tangential velocity at b
sides of the interface att501 as

dv1x15kâ r~v i2v1!, dv2x15kâ tv i . ~3!

In general, both values are different and an initial vortic
k5dv1x12dv2x1 exists at the interface. If a rarefaction
reflected instead of a shock, then the shear velocitydv1x1

should be calculated as in Ref.@15#. Later on, as the shock
separate away, the initial vorticity will change due to ba
clinic generation of the vorticity caused by pressure per
bations behind the shocks and the density jump across
interface. In the bulk, however, first-order vorticity is on
generated at the shock fronts. In Ref.@7#, it was proved that
pressure and density perturbations between the shocks v
when the shocks are sufficiently far away. This is indep
dent of the incident shock strength. This means that the
turbed velocity field asymptotically becomes incompressib
It was also shown in Ref.@6# that the bulk vorticity is of
second order in the shock intensity for a weak shock. The
fore, in the weak shock limit, we have the following relatio
among the amplitudes of the asymptotic velocity pertur
tions at the interface,dv l in5dv1x52dv2x .

Thus by introducing the velocity potentials in both fluid
and the corrugation amplitude of the interface as

f57
v l in

k
exp@7k~y2â coskx!#coskx for y:â,

~4!
â5â0~12v i /ui !,

respectively, we can give the initial velocity shear on t
corrugated interface. The corrugation amplitude of the in
face in the case of the vortex sheet,â, should coincide with
the one att501 in the case that the incident shock pass
through it.

In the simulations, we used an ideal gas equation of s
with adiabatic exponent 5/3 for both fluids. The incide
shock Mach number is 2 and the wavelength of the si
soidal corrugation is 128mm. The other parameters ar
shown in Table I. Note that all of the parameters for t
vortex sheet correspond to the postshock condition and
are calculated from the shock jump conditions and Eq.~4!.

Figure 1 shows density profiles of two cases with gr
scale. Hereafter, we show simulation results in a frame m
ing with the velocity of the undisturbed interface after t

TABLE I. Simulation parameters:r1, light fluid mass density;

r2, heavy fluid mass density;p, pressure at interface;â, initial
corrugation amplitude; andv l in , initial velocity shear.

Shocked interface Vortex sheet

r1 (g/cm3) 431022 1.067731021

r2 (g/cm3) 9.333331022 2.354931021

p ~Mbar! 1 6.1567

â (mm) 4.6322 2.56

v l in ~cm/sec! 3.64653105
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incident shock passes through it, i.e.,v i . Top four are the
cases of the shocked interface at normalized time ofkv l in t
520.083, 1, 6, and 12 from left to right. The incident sho
hits the corrugation surface at normalized timekv l in t50.
Bottom four are the cases of the vortex sheet at normali
time of kv l in t50, 1, 6, and 12 from left to right. The initia
Atwood number and corrugation amplitude of the interfa
are 0.4 andâ0 /l50.0362 for the shocked interface an
those areA>0.376 andâ/l>0.02 for the vortex sheet, re
spectively ~see Table I!. The results show that profiles o
bubble and spike, even mushroom and spiral structures o
spike, are almost the same for both cases, except notice
difference of the bubble structure and the thickness of
spike. The difference may be due to the facts that the b
vorticity behind the transmitted shock suppresses the gro
of the bubble and also that during the interaction of the
cident shock with the corrugated interface, higher harmon
of the corrugation and the velocity shear may arise at
interface in the case of the shocked interface.

Nonlinear evolution of the interface is tracked using t
Lagrangian markers on the interface within second orde
accuracy in both time and space. Figure 2 shows time dep
dence of the nonlinear growth rates normalized by
asymptotic linear growth ratev l in given by Eq.~1! for two
cases. The positive and negative values correspond to
spike and bubble growth rates, respectively. Dashed and
ted line and thin solid line with closed circles indicate t
growth rate for the shocked interface and that for the vor
sheet, respectively. They agree fairly well with each oth
except in early time due to the finite transition time requir
for the incident shock to pass through the interface with
finite corrugation amplitude and also that required for t
instability to reach the asymptotic linear growth rate. T
oscillation of the growth rate for the shocked case is due
the fact that the sound waves propagate back and forth
tween the reflected and transmitted shocks. In the linear

FIG. 1. Density profiles for the case in which a shock hits
interface~top!, and for the case in which velocity shear is initial
imposed on the corrugated interface without shock incident~bot-
tom! at different times. Gray scale shows fluid mass dens
(g/cm3).
1-3
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MATSUOKA, NISHIHARA, AND FUKUDA PHYSICAL REVIEW E 67, 036301 ~2003!
gime, the growth rates of the bubble and spike are the sa
However, they are not the same in the nonlinear regime
shown in the figure. The growth rate of the spike is larg
than that of the bubble in the nonlinear regime. The non
ear growth of the spike increases from its initial value a
reaches its maximum value around time ofkv l in t50.2 in the
case of the vortex sheet andkv l in t50.3 in the case of the
shocked interface, and then decays slowly compared w
that of the bubble. As clearly seen from the figure, the n
linear growth rate of the bubble decays faster than that of
spike in both cases.

The above agreement between both cases indicates
the RM instability grows due to the nonuniform veloci
shear that the transmitted and reflected shocks leave a
corrugated interface. We would like to mention that the u
of the linear asymptotic growth rate for the initial veloci
shear gives not only qualitative agreement but also quan
tive agreement in both cases. It should also be noted tha
asymptotic linear growth rate is uniquely determined fro
the incident shock intensity, the Atwood number, adiaba
coefficients, and the initial corrugation amplitude.

III. NONLINEAR ANALYSIS FOR BASIC EQUATIONS

A. Derivation of the basic equations

We consider the self-interaction of a nonuniform vort
sheet with a density jump. The fluids have different densit
and therefore, the circulation in this system is not conser
due to the baroclinic effect. When surface tension and gr

FIG. 2. Nonlinear growth rate of bubble~bottom! and spike
~top! normalized by the asymptotic linear growth ratev l in as a
function of normalized time,t5kv l in t. Their dimensional values
are also shown in the left and top scales. Dashed and dotted
and thin solid lines with closed circles depict the simulation res
for the cases in which the incident shock hits a corrugated inter
and a nonuniform velocity shear exists att50 on the interface,
respectively, while thick solid and dashed lines depict the re
from the third-order nonlinear analysis for the cases with and w
out the Pade´ approximantsP2

0, respectively.
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tational acceleration are neglected, the temporal evolutio
the circulationG on the interface is given by the following
equation:

DG

Dt
52AFDF

Dt
2

1

2
q•q2

1

8
k•k1

A

2
k•qG

interface

, ~5!

D

Dt
5

]

]t
1ū•¹, ū[

r1u11r2u2

r11r2
5q2

Ak

2
, ~6!

wherek5u12u2 is the vorticity induced on the sheet an
q5(u11u2)/2 is an average of the velocities on the tw
sides with the velocityui( i 51,2) in each side andF5(f1
1f2)/2 is the average velocity potential related withui
5“f i . The circulationG5f12f2 is also related tok as
k5“G. The fluid particle on the interface is set so that th
move with velocityū in Eq. ~6!, which assures that Eq.~5! is
equivalent to the Bernoulli equation, i.e., the pressure c
tinuous condition across the interface. Equation~5! is de-
rived by integrating the Euler equation along the interfa
For the detailed derivation of Eq.~5!, refer to the Appendix.
Similar equation was derived by Bakeret al. using the com-
plex velocity potential@16#. As we can easily see from Eq
~5!, the circulationG is not a conserved quantity ifAÞ0.
From now on, we consider the two-dimensional case,
though Eqs.~5! and ~6! also hold in the three-dimensiona
case.

The system is assumed to be incompressible, theref
the velocity potential satisfies the Laplace equation in e
region:

nf i50 ~ i 51,2!. ~7!

We now consider the interface as a curve in the (x,y)
plane, and parametrize it using a parameterQ, the Lagrang-
ian marker,

x5Q1X~Q,t !,
~8!

y5Y~Q,t !,

wherey denotes the vertical coordinate. We setx5Q at t
50. Then the unit normal vectorn and the unit tangentia
vector t to the interface are given by following expression

n5
~2YQ ,11XQ!

A~11XQ!21YQ
2

, t5
~11XQ ,YQ!

A~11XQ!21YQ
2

, ~9!

where the subscript denotes the differentiation with resp
to the variable. Note that Eq.~8! admits multivalued solu-
tions like a spiral because we do not assume thaty can be
solved as a function of the variablex, y5Y(x;t).

The kinematic boundary conditions at the interface
then given as

rt•n5ū•n5
r1¹f1•n1r2¹f2•n

r11r2
u interface, ~10!

es
s
ce

lt
-
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NONLINEAR EVOLUTION OF AN INTERFACE IN THE . . . PHYSICAL REVIEW E 67, 036301 ~2003!
rt•t5ū•t5
r1¹f1•t1r2¹f2•t

r11r2
u interface ~11!

with the continuity condition of the normal velocity at th
interface

¹f1•n5¹f2•n, ~12!

wherert is given by (Xt ,Yt). It should be mentioned that th
interface motion satisfies the continuity condition of the n
mal velocity,ū•n5u1•n5u2•n.

Note also that Eq.~11! does not indicate that the tange
tial velocities of both fluids are continuous at the interfa
The tangential velocity of the interface is arbitrarily dete
mined and is here given as the velocity of the fluid parti
on the interface obtained from projectingū in Eq. ~6! into the
tangential direction. This condition is set taking into accou
that the initial disturbance is two dimensional, which enab
us to describe the stretching and shrinking of the interfa
Equations~10!–~12! with Eq. ~5! are the boundary condi
tions required to determine the nonlinear evolution of
interface.

We discuss here the difference between the kinem
boundary condition used in the analysis of the KH instabi
and that of the RM instability. If we can ignore the stretchi
and shrinking in the tangential direction as in the case of
KH instability, we can express the profile of the interface
a function ofx; y5Y(x,t). Then, instead of Eq.~10! with
Eq. ~12!, the kinematic boundary condition becomes as f
lows:

]Y

]t
5

]f i

]y
2

]Y

]x

]f i

]x
~ i 51,2!, ~13!

which is obtained by substituting

n5
~2Yx ,1!

A11Yx
2

, rt5~0,Yt!

into Eq.~10! and taking Eq.~12! into account. This condition
was adopted in the previous works by Velikovich and D
monte„Eq. ~2! in Ref. @11#… and Zhanget al.„Eqs.~3! and~4!
in Ref. @12#…. However, it is not adequate to follow the tem
poral evolution of the stretched interface as found in the R
instability. We show the boundary conditions given by E
~10! and ~11! schematically in Fig. 3.

FIG. 3. Schematic picture of kinematic boundary conditio

where ū5(ūx ,ūy) denote interface velocity. Note thatū is not in
the normal direction to the interface.
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B. Solution to the basic equations

The normalized initial amplitude of the interface corrug
tion, â/l, is assumed to be small so that we can forma
expandX andY in Eq. ~8! with a small parametere as

X5eX(1)1e2X(2)1•••,

Y5eY(1)1e2Y(2)1•••,

and the velocity potentialf i ( i 51,2) can also be expande
as

f15 (
n51

`

enf1
(n)5 (

n51

`

enB1
(n)~ t !e2nkycosnkx ~y.0!,

~14!

f25 (
n51

`

enf2
(n)5 (

n51

`

enB2
(n)~ t !enkycosnkx ~y,0!,

where Bi
(n)(t) is the amplitude of thenth modef i

(n) . In
order to evaluate the boundary condition atx5Q andy50
instead ofx5Q1X(Q) andy5Y(Q), we expandf i in the
Taylor series atx5Q andy50 as

f i u interface5f iU01
]f i

]x U
0

X1
]f i

]y U0Y

1
1

2 S ]2f i

]x2 U
0

X21
]2f i

]y2 U
0

Y2D 1
]2f i

]x]yU
0

XY

1
1

6 S ]3f i

]x3 U
0

X31
]3f i

]y3 U
0

Y3D
1

1

2 S ]3f i

]x2]y
U

0

X2Y1
]3f i

]x]y2U
0

XY2D 1•••,

~15!

from which we obtain

]f i
(1)

]x
U interface5

]f i
(1)

]x
U

0

,

]f i
(2)

]x
U interface5

]f i
(1)

]x
U

0

X(1)1
]f i

(1)

]y
U

0

Y(1),
]f i

(3)

]x
U

interface

5
]f i

(3)

]x
U

0

1
]f i

(2)

]x
U

0

X(1)1
]f i

(2)

]y
U

0

Y(1)

1
]f i

(1)

]x
U

0

X(2)1
]f i

(1)

]y
U

0

Y(2)

1
1

2 S ]2f i
(1)

]x2 U
0

~X(1)!21
]2f i

(1)

]y2 U
0

~Y(1)!2)

1
]2f i

(1)

]x]y
U

0

X(1)Y(1)1•••

,

1-5



f t

le

e

r-
n
of

r-

r-
ia

tio

d

th
e

e

od
r-

ters,

to
nts.

ble

MATSUOKA, NISHIHARA, AND FUKUDA PHYSICAL REVIEW E 67, 036301 ~2003!
and so on. Here the subscript 0 indicates that the value o
function is taken atx5Q andy50.

From now on we introduce the dimensionless variab
j5kX, h5kY, u5kQ, t5k2B1t5kv l in t and f̃ i5f i /B1,
and describe all quantities by using them, wherekB1[v l in

52kB1
(1)(0)5kB2

(1)(0) is the asymptotic linear growth rat
given by Eq.~1!.

Taking into account the form ofn and t in Eq. ~9!, and
substituting into Eqs.~5!, ~10!–~12!, we have at first order;

j (1)52At sinu,
~16!

h (1)5~a1t!cosu,

wherea is the dimensionless initial amplitude of the inte
face, i.e.,a52pâ/l. It should be noted that the Lagrangia
marker on the interface moves with a finite velocity
]j (1)/]t52A sinu in the x direction if the Atwood number
is finite. Note also that Eq.~16! denotes an ellipse. The no
malized circulationg5G/k is given as

g (1)522 cosu, ~17!

at this order.h (1), ]h (1)/]tuu50,p in Eq. ~16! andg (1) in Eq.
~17! coincide with the initial amplitude of the interface co
rugation, the asymptotic linear growth rate and the init
circulation on the interface att50, respectively.

Similar calculations yield at second order

j2
(2)5F12A2

4
t21

122A2

2
atGsin 2u, j0

(2)50,

~18!

h2
(2)5

Aat

2
cos2u, h0

(2)5
At2

2
1S Aa

2
1CD t,

where the superscript and subscript denote the order ofe and
the mode number generated due to the nonlinear interac
respectively. The integral constantC in Eq. ~18! is deter-
mined to beC52Aa/2 so that the initial velocity ofh0

(2) is
0. Here we setjm

(2)(0)5hm
(2)(0)50 (m50,2), i.e., we as-

sume that the higher harmonics including the 0th mode
not exist initially. Note that the vertical componenth0

(2) in
Eq. ~18! is derived from the mutual interaction betweenj (1)

and h (1), which contributes to the difference of the grow
between the bubble and spike as will be discussed in S
IV A and IV B. The circulationg (2) is given as

g (2)52A~a1t!cos 2u. ~19!

At third order, we have

j3
(3)5FAt3

4
~12A2!1

7Aat2

8
~12A2!

1
Aa2t

8
~11212A2!Gsin 3u,
03630
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j1
(3)5FAt3

12
~523A2!1

Aat2

8
~52A2!

1
Aa2t

8
~328A2!Gsinu,

h3
(3)5a2tS A22

7

8D cos 3u,

h1
(3)5Ft3

3 S A22
1

2D1
at2

2
~2112A2!

1a2tS A22
5

8D Gcosu, ~20!

g3
(3)5F2

t2

2 S 11
7A2

3 D2atS 11
13A2

6 D2a2A2Gcos 3u,

g3
(1)5F2

t2

2
~11A2!2atS 12

A2

2 D2a2A2Gcosu,

~21!

where we also set the initial condition thatjm
(3)(0)

5hm
(3)(0)50 (m51,3).

By introducing the normalization time with the use of th
asymptotic linear growth rate, i.e.,kv l in t, all of the physical
variables are uniquely determined only with the Atwo
numberA and the initial corrugation amplitude of the inte
facea.

IV. DISCUSSIONS AND COMPARISON OF ANALYTICAL
RESULTS WITH SIMULATIONS AND EXPERIMENTS

In this section, we use the same values of the parame
such as the initial corrugation amplitudea and the Atwood
numberA, as those used in Sec. II otherwise specified
compare analytical results with simulations and experime

A. Nonlinear growth rate

First, we discuss the nonlinear growth rate of the bub
and spike. From Eqs.~16!, ~18!, and ~20!, the velocities of
bubble]hbub /]t and spike]hspk/]t are given within the
third-order nonlinearity as

]hbub

]t
5(

i 51

3
]h ( i )

]t
uu5p

5S 2A21
1

2D t21~22A2a1A1a!t

1S 22A21
3

2Da21
1

2
Aa21,
1-6
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]hspk

]t
5(

i 51

3
]h ( i )

]t
uu50

5S A22
1

2D t21~2A2a1A2a!t

1S 2A22
3

2Da21
1

2
Aa11, ~22!

where all modes appeared in each order are included
h ( i ). Equation~22! shows that the growth rates of the bubb
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and spike are not the same in the nonlinear regime
observed in the simulations. The nonlinear growth r
depends also on the initial amplitude of the interface cor
gation,a, as shown in Eq.~22!. It should be also noted tha
the proportionality of the linear growth rate to the initi
corrugation amplitude has been included in the normali
time.

The difference between the simulation results and the a
lytical results in Fig. 2 can be improved by using the Pa´

approximantsP2
0 @17,18# given as
P2
0ubub5

abub
3

FabubS A22
1

2D1~22A2a1A1a!2Gt22abub~22A2a1A1a!t1abub
2

,

P2
0uspk5

aspk
3

F2aspkS A22
1

2D1~2A2a1A2a!2Gt22aspk~2A2a1A2a!t1aspk
2

,

e

the
sly,
at a
ike

he
ike
,
cles
whereP2
0ubub andP2

0uspk denote the Pade´ approximants with
respect to]hbub /]t and]hspk/]t in Eq. ~22!, respectively,
and abub5@(22A213/2)a21Aa/221# and aspk5@(2A2

23/2)a21Aa/211#. The coefficients are derived from Eq
~22!.

The result using the Pade´ approximantsP2
0 is also shown

in Fig. 2. We can see that the analytical results of the n
linear growth rates agree quite well with the simulation
sults for relatively long time. All of the previous works tha
used the impulsive model had to introduce a free param
to adjust the nonlinear growth rate. However, our model
uniquely determine the nonlinear evolution of the RM ins
bility from the initial corrugation amplitude of the interface
the Atwood number of the interface before the incident sh
hits, and the incident shock intensity.

We now compare our nonlinear prediction with expe
ments by Dimonteet al. in Ref. @19# where a rarefaction
wave was reflected and the phase inversion of a inter
occurs. Taking this fact into account@15#, we evaluate the
post shock variables such as the Atwood numberA

50.584 26, the corrugation amplitudeâ/l522.0482/100,
and the linear growth ratev l in51.05423106 cm/sec. ~For
details of the experiments, the reader is referred to Ref.@19#,
in which they showed that the transmitted shock detached
interface about 2.3 ns. Therefore we choose this time of
experiment ast501 in our model.! In Fig. 4, we plot the
bubble and spike amplitudes as functions of time and co
pare with the experimental points. It should be noted tha
the experiments they did not resolve the bubble and sp
separately but showed only Fourier mode amplitudes. Th
fore, we also plot the amplitudes taken an average betw
the bubble and spike. In spite of the fact that the incid
-
-

er
n
-

k

ce

he
e

-
n
e
e-
en
t

shock Mach number in the experiments is very high,M
515.3, the analytical solutions agree fairly well with th
experiment.

Figure 2 shows that as observed in the simulations,
analytical growth rate of the bubble decreases monotonou
while that of the spike increases once and has a peak
certain time. This peak indicates that the velocity of the sp

FIG. 4. Comparison of analytical nonlinear growth rate with t
experiment@19#. Dashed and dotted lines depict bubble and sp
amplitudes obtained using the Pade´ approximants, respectively
while the solid line depicts their average. Open and closed cir
show experimental results in Fig. 15 in Ref.@19# with different
methods of the measurement.
1-7
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has an extremal value, which always exists for the case
A<1/A2 within the third-order approximation as we s
from ]hspk/]t in Eq. ~22!. When the Atwood number isA
>1/A2, the velocity of the spike does not have the extrem
value and the velocity diverges before timet51. This di-
vergence is also found in the result of Velikovich and D
monte @11# in which they assume that the Atwood numb
equals 1. Since Eq.~22! is a quadratic equation with respe
to t, we can calculate the maximum values of the nonlin
growth rate for the spike. We show the dependence of
maximum value of the spike growth rate on the Atwo
number and the initial amplitude of the interface corrugat
in Fig. 5. It is clearly seen that the larger Atwood numb
leads to the larger nonlinear growth rate, while the la
amplitude of the initial corrugation decreases the maxim
values of the nonlinear growth rate. The dependence of
nonlinear growth on the Atwood number will be also d
cussed in the following subsection.

B. Profile of bubble and spike

In our model, the interface is allowed to expand and c
tract in the tangential direction. We observe the motion of
Lagrangian markers in the simulations and compared it w
the analytical results. We calculate the points of the Lagra
ian markers by substituting Eqs.~16!, ~18!, and~20! into the
relation of „x(u),y(u)…5„u1( i 51

3 j ( i )(u),( i 51
3 h ( i )(u)….

Figure 6 shows the simulation results of the shocked in
face ~left! and the vortex sheet~middle!, and the analytical
result ~right!. For the shocked interface at early time oft

FIG. 5. Dependence of the maximum nonlinear growth rate
spike on Atwood numberA and initial corrugation amplitude o
interfacea.
03630
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50.05, the displacement of the markers from they axis
~open circles in left figure! is relatively small compared with
other two cases. This is due to the finite transition time
quired for the shocked interface to reach the asymptotic
ear growth, as mentioned before. We show the motion of
Lagrangian markers with arrows. As is obvious from Fig.
the Lagrangian markers move in thex direction ~horizontal
direction! as well as in they direction ~vertical direction!.
The analytical results agree fairly well with the simulation

The stretching of the interface can be calculated fr
]s/]t, wheres5A@u1j(u)#21h(u)2. ]s/]t at t50.8 is
shown in Fig. 7~a!. At this time, the stretching of the inter
face in the spike is much larger than that in the bubble
should be, however, noted that the maximum of the interf
stretching appears not at the top of the spike but at the s
near the top. The double peaks of]s/]t shown in Fig. 7~a!
are due to the maximum stretching of the interface in thx
direction in addition to they direction as can be seen in Fig
7 ~b!, which shows]j/]t. Namely, at this time the tip of the
spike starts to expand in thex-direction to form the mush-
room. It is noted that]j/]t has both positive and negativ
values as shown in Fig. 7~b!, which corresponds to the di
rection of the interface stretching~or shrinking! in the x co-
ordinate as seen in thex component of the arrows shown i
Fig. 6. In the regions where]2j/]t]u,0, the interface is
contracted in thex direction, while in the regions where
]2j/]t]u.0, the interface is expanding in thex direction.

In Fig. 8, we compare profiles of the interface obtain
from our boundary conditions Eqs.~10! and~11!, with those
obtained from the boundary condition used by Zhang a
Sohn@12#, i.e., Eq.~13!. It should be mentioned that Zhan
and Sohn have expanded up to the fourth order, but we h
use only up to the third order. We can see that the interfac
strongly stretched in the tangential direction at the top of
spike in the case shown in Fig. 8~a! compared with that in
the case shown in Fig. 8~b!. Note that at timet51 in Fig.
8~b!, the bubble structure is strongly deformed and t
bubble curvature changes its sign, which is not observe
the simulation. The previous works@11,12# did not include
the motion of the interface in the tangential direction, whi
may cause their failure to resolve the bubble structure at
51.

f

e

FIG. 6. Motion of the Lagrangian markers, where the horizontal axis is taken from2p to 0 for the case of shocked interface~left!, from

2p to 0 for the cases of vortex sheet~middle!, and from 0 top for analytical result~right!. White and black circles depict positions of th
Lagrangian markers at time oft50.05 andt50.8, respectively.
1-8
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The boundary conditions, Eqs.~10!–~12!, correspond to
the following ‘‘modified’’ Birkhoff-Rott equation~it is often
taken asZ2Z8 in the denominator in the integral instead
Z82Z) @20,21#:

]Z*

]t
5

1

2p i E kds8

Z82Z
2

Ak

2

Zu*

su
, ~23!

whereZ(t)5x1 iy , andZ8(t)5x81 iy8 denotes the position
of the interface which is regarded as a vortex sheet,Z* is the
complex conjugate ofZ andkds5dG is the unit intensity of
the vortex sheet with the line elementds related asZuZu*
5su

2 . An analogous equation has been derived in Ref.@16# to
investigate the motion of free surfaces. The second term
the right hand side of Eq.~23! gives rise to the interface
motion in the tangential direction. Note that the second te
is proportional to the Atwood numberA and the vorticityk.
Sincek5¹G changes its sign along the interface, the exp
sion and contraction of the interface occur locally in the ta
gential direction only for a finite Atwood number. We ca
easily check that the modified Birkhoff-Rott equation has
same solution as given by Eq.~16! by performing the com-
plex integral of Eq.~23!. The Birkhoff-Rott equation is ef-

FIG. 7. ~a! Rate of change in dimensionless length of the int
face, ]s/]t as a function ofu1j(u); and ~b! deviation of the
interface in thex direction,]j/]t as a function ofu.
03630
n
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fective to investigate the asymptotic behavior of the vor
sheet for larget. The analysis in terms of the Birkhoff-Rot
equation will be published elsewhere.

We now discuss how the density jump affects the non
ear growth and the profile of the bubble and the spike. In F
9, we show the profiles of the interface with different A
wood numbers of~a! A50.2, and~b! A50.6 with the same
initial corrugation amplitude ofâ/l50.02. It can be seen
that the larger is the Atwood number, the faster is the n
linear growth of the spike, while the slower is that of th
bubble. This result indicates that in the nonlinear regime
we consider a fixed mass density of the heavy fluid, as

-

FIG. 8. Profiles of the interface with different boundary cond
tions: ~a! given by Eqs.~10! and ~11!, y5h againstx5u1j(u);
and ~b! given by Eq.~13!, y5h againstx5u, where the initial
corrugation amplitude ofa50.0232p, the Atwood number ofA
50.376; six lines are from near they50 axis at different times of
t50, 0.2, 0.4, 0.6, 0.8, 1.0, respectively.
1-9
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example, the heavy material~spike! penetrates faster into th
light fluid as the decrease of the light fluid mass dens
while the light fluid ~bubble! penetrates slower into th
heavy fluid. It should be noted that the normalized timet
5kv l in t includes the asymptotic linear growth rate that d
pends on the density ratio across the interface as given in
~1!. Therefore, this dependence of the growth on the Atwo
number is not due to the dependence of the linear growth
on the Atwood number, but due to the nonlinearity.

The profiles of the bubble and spike are symmetric in
linear theory, but not any more in the nonlinear regime.
see in Fig. 9, that the larger is the Atwood number, the n
rower is the width of the spike, while the more flatten is t
top of the bubble. This dependence of the nonlinear profi
of the bubble and the spike on the Atwood number is mo

FIG. 9. Profiles of the interface with different Atwood numbe
~a! A50.2 and~b! A50.6, from neary50 axis att50, 0.2, 0.4,
0.6, 0.8, and 1.0, respectively, where all parameters except the
wood number are the same as Fig. 8.
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due to the motion of the interface in the tangential directio
which is proportional to the Atwood number as shown in t
second term in the right hand side of Eq.~23!. Namely, as
described before~in Fig. 6!, the motion of the Lagrangian
markers in thex direction increases with the increase of t
Atwood number, which results in the narrow spike and t
flatten bubble as the increase of the Atwood number.

C. Circulation and vorticity on interface

In the linear regime of the instability, the circulation o
the interface does not change as given by Eq.~17! after the
instability reaches the asymptotic linear growth rate. Ho
ever, as shown in Eq.~5!, the nonlinear terms drive the tem
poral evolution of the circulation along the interface with t
finite Atwood number and thus generate higher harmonic
the circulation even if only a single mode exists initially. In
recent attempt@22# to apply a single-mode approximation t
a two-fluid system in order to derive a heuristic drag mo
solution @23#, the boundary conditions were not satisfie
which will be discussed in detail elsewhere. Figure 10 sho
the vorticity distributions along the interface,k5dg/ds
5(xu

21yu
2)21/2dg/du. They are calculated from Eqs.~17!,

~19!, and ~21!. As a result of the continuous change of th
vorticity on the interface, the vorticity distribution on th
interface att50.8 becomes quite different from that att
50.05. Initially, there is only one mode. However, new loc
maxima and minima of the vorticity appear on the interfa
at t50.8. The third harmonics of the vorticity leads main
to these local maxima and minima.

The absolute values of the maximum and minimum v
ticities at u1j(u)>70.82 (u>70.80) in Fig. 10 increase
very rapidly with time, while those of the local maximum
and minimum vorticities atu1j(u)>71.38 (u>71.36) in
the same figure decrease further with the increase of ti
We here call the former as pointS, and the latter as pointO,
as indicated in the figure. It should be noted that the poi
both S andO, change their position on the Lagrangian coo
dinate with time. Although the theory breaks up for larget,
we should mention the following facts observed in the sim
lation in which we can track the Lagrangian markers. Figu
11 shows some of the Lagrangian markers~dots! at t56 and
12 corresponding to the density profiles shown in the ri
two figures in the bottom of Fig. 1. They were initially dis

t-

FIG. 10. Normalized vorticity“g along the interface as a func
tion of u1j(u) at timet50.05 ~dashed line! and 0.8~solid line!.
1-10
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NONLINEAR EVOLUTION OF AN INTERFACE IN THE . . . PHYSICAL REVIEW E 67, 036301 ~2003!
tributed with an equal distance between neighbor po
along the interface, i.e.,du52p/N, where N5512 is the
number of the markers. Therefore different distances
tween neighbor Lagrangian markers in Fig. 11 indicate t
the stretching and shrinking of the interface occurs loca
The stretching of the interface occurs mostly at the ou
surface of the mushroom and at the joint between the mu
roomumbrella and its stock. The shrinking of the interfa
occurs mostly at the inner surface of the mushroom sp
We can also see other points where the interface is loc
stretching or shrinking.

By observing the trajectories of the Lagrangian marke
we find that the pointS in Fig. 10 turns out to be the tips o
the spiral in the fully nonlinear phase of the instability
shown withS in Fig. 11. Namely, the maximum and min
mum of the vorticity shown withS in Fig. 10 associate with
the singularity that appears at the tips of the spiral in
system with the finite Atwood number. On the other ha
the pointO in Fig. 10 moves to the joint of the mushroo
umbrella and its stock as shown withO in Fig. 11. It should
be noted that the pointsSandO in Fig. 10 correspond to the
points near where the absolute value of]j/]t has a maxi-
mum value and]j/]t.0 at t50.8, respectively, as seen i
Fig. 7. Namely, at the pointS, the interface starts to expan
in thex direction att50.8, while the pointO does not move
much in thex direction after that time.

The gray scale of the dots in Fig. 11 indicates thez com-
ponent of the vorticity,“3v, on the Lagrangian markers
which is calculated from the linear interpolation of the on
on its nearest four grid points in the simulation. Black a
white correspond to negative and positive values of thz
component of the vorticity, respectively, as scaled in the
ure ~arbitrary units!. It should be noted that the sign of thez
component of“3v has the opposite sign of“g, defined in
Sec. III. Since the initial vorticity“g on the interface is
negative inu,0, while that is positive inu.0, as shown
with the dashed line (t50.05) in Fig. 10, blight dots appea
mostly in the left half of the interface (u,0), while dark
dots appear mostly in the right half of the interface (u.0) as

FIG. 11. Lagrangian markers for the case of the vortex shee
time of t56 ~left! and 12~right!. They are initially distributed with
equal distance between neighboring points. The gray scale o
dots indicates thez component of the vorticity,“3v; white and
black correspond to positive and negative values, respectively.
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shown in Fig. 11~a! at t56. However, we can see in Fig
11~b! at t512 that the points with a different darkness a
pear on the interface. We would like to emphasize that
different darkness appears near the pointO in Fig. 11, i.e.,
black in the white~left!, and vice versa~right!, near the joint
of the mushroom umbrella and its stock. Namely, in t
strongly nonlinear regime of the instability, such as att56
and 12, the vorticity near the pointO has an opposite sign
from its initial value. It indicates that the decrease of t
absolute value of the vorticity shown asO in Fig. 10 results
in the opposite sign of the vorticity appearing at the joint. W
would also like to mention that the appearance of the op
site sign of the vorticity near the pointO may cause the
generation of the double spiral structure of the mushroom
the RM instability, because the vorticity with the oppos
sign induces the stretching of the interface in the tangen
direction, as clearly seen from the comparison of the d
tances between the neighboring Lagrangian points near
point O at t 5 6 and with those att512 in Fig. 10.

Finally, we discuss the increase of the circulation on
interface with time and its dependence on the Atwood nu
ber A and the initial corrugation amplitudea in the RM
instability. Since we assume initially a sinusoidal circulatio
its integration along the interface over the wavelength
comes zero. Therefore, we calculate time evolution
*g.0dg for only a region whereg.0 that denotes the cir
culation*kds restricted tok.0, which is shown with solid
line in Fig. 12~a!. We can see the rapid increase of the c
culation in the nonlinear regime of the instability. Since t
total length of the interface increases also with time,

at

he

FIG. 12. Circulation on the interface:~a! temporal evolution of
*g.0dg ~solid line! and average vorticity per unit interface leng
*k.0kds/*ds ~dashed line!, both are normalized by their initia
values;~b! dependence of*g.0dg on the Atwood numberA and the
initial corrugation amplitudea at t50.8, where*g.0dg denotes
the circulation*kds restricted tok.0.
1-11
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increase of*g.0dg does not always indicate the increase
the vorticity along the interface. Dashed line in Fig. 12~a!
shows the average vorticity per unit length on the interfa
*kds/*ds for k.0. The values shown in the figure a
normalized by their initial values. It is clearly seen that bo
the circulation and the average vorticity per unit length
the interface increase with time in the nonlinear phase of
RM instability. The increase of the circulation at early time
mainly due to the increase of the vorticity on the interfa
per unit length, while the increase at later time is mainly d
the increase of the interface length.

In Fig. 12~b!, we show the dependence of*g.0dg on the
Atwood number and the initial corrugation amplitude. Sin
*g.0dg increases with time, the result shown in Fig. 12~b! is
calculated at the normalized timet50.8. As clearly seen in
the figure, the circulation increases faster with the increas
both the initial corrugation amplitude and the Atwood nu
ber. However, the increase of the circulation depe
strongly on the initial corrugation amplitudea compared
with the Atwood numberA. This can explain the simulation
result @13# showing that the larger is the initial corrugatio
amplitude, the faster is the speed of the roll up of the spira
the tip of the mushroom. It is interesting to mention that t
increase of the Atwood number accelerates the nonlin
growth rate of the spike and suppresses the nonlinear gro
of the bubble as shown in the preceding section, while
increase of the initial corrugation amplitude enhances
increase of the circulation and thus accelerates the rol
motion of the spiral.

V. CONCLUSIONS

With the assumption of incompressible and irrotation
fluids, we have developed an analytical model for a wea
nonlinear evolution of the RM instability. The theory show
that it is treated as a nonlinear self-interaction of a nonu
form vortex sheet with a density jump. With the proper k
nematic boundary conditions, the Lagrangian description
the vortex sheet enables us to follow its nonlinear dynam
such as its local stretching and shrinking in the tangen
direction. By using the asymptotic linear growth rate of t
RM instability, we have shown that the nonlinear evoluti
of the instability is uniquely determined from the initial co
rugation amplitude of the interface, the Atwood number, a
the incident shock intensity.

The theory reveals various nonlinear properties of the R
instability. For example, the increase of the Atwood num
enhances the nonlinear growth of the spike, but reduces
nonlinear growth of the bubble. The larger is the Atwo
number, the narrower is the width of the spike, while t
more flatten is the top of the bubble. The density jump acr
the interface induces local increase and decrease of the
ticity on the interface. The larger is the initial corrugatio
amplitude, the larger is the nonlinear increase of the vor
ity. The theory quantitatively gives those dependences on
Atwood number and the initial corrugation amplitude.

Although we have constructed the analytical model with
a weak incident shock limit, the theory can be applica
even for a relatively large Mach number. The agreement
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the analytical results with the simulations~Mach number of
2! and the experiments~Mach number of 15.3! show the
validity of the model.
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APPENDIX

In this appendix, we give a simple derivation of Eq.~5!.
Using relation~6!, the Lagrange derivative ofui ( i 51,2) is
expressed by

Dui

Dt
5

]ui

]t
1~ ū•“ !ui5

Diui

Dt
1@~ ū2ui !•“#ui , ~A1!

where

Di

Dt
5

]

]t
1ui•“, u15q1

k

2
, u25q2

k

2
. ~A2!

Integrating Eq.~A2! along the sheet, we have foru1

D

DtE u1•ds5E D1u1

Dt
•ds1E F S q2

Ak

2
2u1D •“Gu1•ds

1E u1•~ds•“ū!, ~A3!

where we used the following relation:

D

Dt
ds5d

Ds

Dt
5dū5ds•“ū

or the third term on the right-hand side of Eq.~A3!. Here,ds
is the line element vector along the sheet,d is identical toD

on the sheet, and“ū denotes a tensor quantity such
]ū j /]xk . The second term on the right hand side of Eq.~A3!
can be rewritten as

E F S q2
Ak

2
2u1D •“u1G•ds

5E ~q2u1!•“u1•ds2
A

2E ~k•“ !u1•ds.

~A4!

Returning to the third term on the right-hand side of E
~A3!,

E u1•~ds•“ū!5E u1•~ds•“q!2
A

2E u1•~ds•“k!,

~A5!

in which
1-12
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E u1•~ds•“k!5
1

2E k•~ds•“k!1E q•~ds•“k!.

~A6!

If the gravity and the surface tension can be neglected,
have from Eqs.~A3!–~A6! that

D

DtE u1•ds

52
1

r1
E “p•ds2

1

4E ~k•“ !k•ds2
1

2E ~k•“ !q•ds

2
A

2E ~k•“ !q•ds2
A

4E ~k•“ !k•ds

1E q•“q•ds1
1

2E k•ds•“q

2
A

4E k•~ds•“k!2
A

2E q•~ds•“k!, ~A7!

where we used the Euler equation

]u1

]t
1~u1•“ !u152

1

r1
“p.

Analogous calculations fori 52 lead to

D

DtE u2•ds

52
1

r2
E “p•ds2

1

4E ~k•“ !k•ds1
1

2E ~k•“ !q•ds

2
A

2E ~k•“ !q•ds1
A

4E ~k•“ !k•ds1E q•“q•ds

2
1

2E k•ds•“q1
A

4E k•~ds•“k!

2
A

2E q•~ds•“k!. ~A8!

Adding the third term and the seventh term in Eq.~A7! to

2
1

2E ~k•“ !q•ds1
1

2E k•ds•“q

52
1

2E ds•~k•“ !q1
1

2E k•ds•“q

5
1

2E ~k3ds!•“3q50, ~A9!

where we used the relation

“3q5
1

2
“3~u11u2!50,
03630
e

which is obtained from the irrotationality“3ui50 in each
region i.

Taking into account Eq.~A9! and subtracting Eq.~A8!
from Eq. ~A7!, we have

D

DtE u1•ds2
D

DtE u2•ds

52
1

r1
E “p•ds1

1

r2
E “p•ds2

A

2E ~k•“ !k•ds

2
A

2E k•~ds•“ !k

5S 1

r2
2

1

r1
D E “p•ds2

A

2 F E ~k•“ !k•ds

2E k•~ds•“ !kG2AE k•~ds•“ !k. ~A10!

The second term on the right-hand side of the last equalit
Eq. ~A10! leads to

2
A

2 F E ~k•“ !k•ds2E k•~ds•“ !kG
52

A

2
~k3ds!•“3k

5~k3ds!•~“3ū!2~k3ds!•“3q50,

from which we have

D

DtE u1•ds2
D

DtE u2•ds

5
r12r2

r1r2
E “p•ds2AE k•~ds•“ !k

5
r12r2

r1r2
p2

A

2
k•k. ~A11!

Taking into account that the left-hand side of Eq.~A11!
equalsDG/Dt, we obtain

DG

Dt
5

r12r2

r1r2
p2

A

2
k•k. ~A12!

Now adding Eqs.~A7! and ~A8! to

D

DtE u1•ds1
D

DtE u2•ds

52
DF

Dt

52
r11r2

r1r2
p2

1

4
k•k1q•q2Ak•q. ~A13!
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By deleting the pressurep from Eqs.~A12! and ~A13!, we
obtain Eq.~5!:

DG

Dt
52AFDF

Dt
2

1

2
q•q2

1

8
k•k1

A

2
k•qG

interface

.

Note that if we setA50 in this equation, the well-known
Y.

in
si

03630
Kelvin’s circulation theoremDG/Dt50 is obtained. We add
that Eq.~5! equals to the Bernoulli equation

r1F]f1

]t
1

1

2
~“f1!2G5r2F]f2

]t
1

1

2
~“f2!2G ,

taking into account the relationG5f12f2.
n,

h-
2
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